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[1] The preferred price specification for retail water demand estimation has not been fully
settled by prior literature. Empirical consistency of price indices is necessary to
enable testing of competing specifications. Available methods of unbiasing the price index
are summarized here. Using original rate information from several hundred Texas utilities,
new indices of marginal and average price change are constructed. Marginal water
price change is shown to explain consumption variation better than average water price
change, based on standard information criteria. Annual change in quantity consumed per
month is estimated with differences in climate variables and the new quasidifference
marginal price index. As expected, the annual price elasticity of demand is found to vary
with daily high and low temperatures and the frequency of precipitation.
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1. Introduction

[2] Economic views on water demand continue to gain
attention as a result of the scarcity sensitivity that is intrinsic
to a value-dependent vision of demand. The almost world-
wide phenomenon of rising water scarcity makes the
economic perspective useful in multiple ways. Among these
is the policy significance of signaling scarcity to all water
users through more informed rate-making, so as to motivate
efficient consumption and conservation behavior. Another
key advantage of understanding how water usage depends
on water value is being able to perform ex ante appraisals of
water projects’ prospective benefits. Other policy-relevant
advantages are also attributable to the economic view of
demand or do not become tractable until demands have
been estimated.
[3] To firm up these achievements and turn concepts into

practice, economists have conducted many empirical inves-
tigations of water demand [Renzetti, 2002]. The study area
of greatest concentration pertains to household demand for
water in urbanized areas, which is also the subject of this
study [Arbués et al., 2003; Dalhuisen et al., 2003]. Un-
doubtedly, a strong contributing factor to this emphasis is
the comparative availability of reasonably reliable data. As
compared to agricultural, industrial, and heavy commercial
water usage, residential/urban water use is more likely to
occur in settings wheremanywater users are active, water use
is reasonably well metered and not self-reported, and a
variety of consumption circumstances can be observed. The
latter factor is important for producing an acceptable degree
of variation in statistically exogenous variables, so as to
permit analysis of potentially influential factors. In all such
studies, fundamental requirements are that consumers have
the freedom to determine their water use, and that researchers

can observe water use and water price(s), as well as other
demand-driving factors.
[4] Utility-maximizing consumer behavior is straightfor-

ward to model when price and quantity demanded are well
known to the consumer, and standard modeling practice is
that consumers are presumed to be rationally advancing
their own welfares in the data they generate for us. These
assumptions are not well met, however, when the good in
question is retail water service. Unlike most goods house-
holds buy, water costs are fully revealed to the consumer
well after the consumption decision is made, when the
monthly or bimonthly bill arrives. When this bill does
come, it typically does not transparently communicate water
price to consumers. Thus, discerning the prospective expen-
diture effects of behavioral modifications can be a chal-
lenge for consumers, given that bills are functionally
dependent on some or all of the following elements: a flat
fee per period billing, uniform or block rates, seasonal
rates, metered-water-dependent sewerage fees, and often
fees for the provision of nonwater services such as garbage
disposal and energy.
[5] Even water quantity information is elusive from the

consumer’s vantage, since water-consuming taps and appli-
ances hardly ever provide volumetric usage information.
Nor does a water bill provide the consumer with a fully
satisfactory alternative. A water bill does not itemize the
array of water use activities conducted by the consumer;
instead they are lumped into a single water usage quantity.
Bills provided by some water utilities do not even indicate
units of measurement, compounding the complexities of
consumer price information.
[6] Consumer perception of water’s marginal price is

especially dim. Evidence suggests that fewer than 10% of
customers invest in marginal price knowledge [Carter and
Milon, 2005]. In a recent survey of water utility systems,
only 2.9% provided customers with the price schedule on
their water bills [Gaudin, 2006]. Cognizant of the bounds of
consumer rationality under costly information, water (and
electricity) demand modelers have turned their attention
from the price to which consumers allegedly should re-

1Department of Agricultural Economics, Texas A&M University,
College Station, Texas, USA.

Copyright 2008 by the American Geophysical Union.
0043-1397/08/2007WR006233$09.00

W08420

WATER RESOURCES RESEARCH, VOL. 44, W08420, doi:10.1029/2007WR006233, 2008
Click
Here

for

Full
Article

1 of 9

http://dx.doi.org/10.1029/2007WR006233


spond, to ask which price do consumers respond to [Shin,
1985]. In econometric terms, this requires formal testing of
alternate price specifications.
[7] Unfortunately, the gathering of evidence to settle this

empirical question has been confounded by the difficulty of
producing any price index that conforms to the OLS
assumption of a random error term uncorrelated with the
independent variable. Competing specifications cannot be
fairly compared unless they are measured accurately. Some
previous attempts to construct an exogenous price index are
reviewed in this article. None has been entirely satisfactory.
An alternative index is proposed that incorporates rate
information in a hypothetical price difference between rate
regimes. The new index is a quasidifference operation: the
difference between the observed lagged price and the
unobserved contemporaneous price net of demand-side
influences. Since it is based on the published (deterministic)
supply decisions of the water provider, this price quasidif-
ference does not vary simultaneously with demand and
therefore provides a theoretically unbiased estimate of
supply price change. From this basis, the relative behavioral
influence of alternate theoretical specifications can be
compared. It is hoped that this procedure will open the
door to a more active generation of behavior-based price
hypotheses. We limit ourselves here to consideration of
marginal price and average price specifications only.
[8] Once an unbiased and behaviorally descriptive price

index is selected, an equation of annual demand elasticity is
calculated. Community-level rate and usage data are
obtained for a sample of 385 utility systems in Texas. The
breadth of the data may be unprecedented among studies of
this kind. The wide range of observed prices in these data
may provide a wider applicability for the estimated param-
eters than previous research. The aggregate character of the
data is respected by weighting the quasidifference estima-
tors by the presumed standard lognormal distribution of
households across total quantity demanded. A semiflexible
functional form is employed that allows price elasticity to
vary linearly with the climatic parameters, resulting in a
rejection of the hypothesis of constant elasticity. Unlike the
preponderance of demand analyses which are static, this
elasticity in differences provides a time-rate of adjustment
(one year) rather than an assumed re-equilibrium adjust-
ment. This distinction makes the results especially useful for
projecting the repercussions of a change in pricing policy
over the near future, or in planning successive rate changes.

2. Sources of and Responses to Price Endogeneity

[9] Charges for residential water service are set adminis-
tratively, typically only at the beginning of the fiscal year.
Consumers experience the rate schedule as they would a
market supply correspondence, except that the household
supply function is nonconstant when the marginal price of
water varies with household usage. In contemporary rate
structures the most common form of water price discrimi-
nation is the increasing block rate (IBR) structure, which is
found in 47% of the present data (with less than 1%
exhibiting decreasing block rates). Under IBR or any other
rate regime where price is determined simultaneously with
the quantity decision, identification issues analogous to
those familiar to market demand analysts must be addressed
[Working, 1927]. It is also possible that the choice to adopt

IBR is itself endogenous [Hewitt, 2000b; Reynaud et al.,
2005].
[10] In choosing a consumption quantity, consumers

subjected to block rates implicitly select a marginal price,
even if they are unaware of the choice. If an entire
community is modeled as a single representative consumer,
this price endogeneity can be exaggerated, spuriously
influencing elasticity estimates [Shin, 1985]. The low-
information average price specification is further biased
by the algebraic simultaneity of division by the dependent
variable when a flat fee is included [Taylor et al., 2004].
This problem exists for uniform rates (constant marginal
price) as well as for variable block rates. Given these
inconvenient properties of observed price measures,
research has tried to derive a price variable that more
adequately captures the ceteris paribus effect of changing
fee schedules. Previous strategies to properly identify the
price signal may be generally grouped into reduced form,
instrumental variable (IV), and maximum likelihood (ML)
techniques [Herriges and King, 1994].

2.1. Reduced Form Price

[11] The reduced form strategy involves creating a price
index of known fee schedule parameters that is independent
of observed volume. An early example is provided by
Taylor [1975], who proposed regressing on each block of
multiblock rates. Since nonlinear fee schedules are multidi-
mensional, this technique incorporates more price informa-
tion, while eliminating quantity consumed as an argument
of price charged. The disadvantages of the approach are the
lack of theoretical support, additional complexity [Herriges
and King, 1994], and misspecification bias. The latter arises
from the inaccurate assumption that any given price index
will be equally representative across the range of observed
consumption quantities.

2.2. Instrumental Price

[12] The IV approach [Nieswiadomy, 1991] allows price
to vary across the observed range, at the cost of additional
complexity, by identifying a linear proxy to the theoretical
supply curve. Although widespread in studies of competi-
tive markets, IV applied to public utilities suffers a number
of disadvantages. One is the problem of estimating a
censored variable as a line. IV price estimates evaluated at
the extrema are not necessarily a combination of experi-
enced prices or even necessarily greater than zero. The
result is a correlation between the IV price and the regres-
sion error [Terza, 1986]. When this problem is addressed
with the use of limited dependent variable techniques, the
method is equivalent to ML price estimation.
[13] The demand price, that ideal scalar employed by the

model consumer’s decision process, is ultimately unknown.
Demand modeling depends upon parameterizing the de-
mand price in terms of the supply price, i.e., the rate
schedule. An IV price is therefore an instrumental estimate
of an instrument. Problematically, the IV price correspon-
dence predicts intra-annual price changes that are neither
observed nor institutionally feasible. Nevertheless, IV may
be necessary if the data used are spot prices at arbitrary
consumption levels. If the timing and magnitude of fee
schedule changes are known, however, the IV approach is a
distant second-best solution, as it is inefficient to reconstruct
perfectly known price policies into a stochastic estimate of
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pricing policy. In Texas as elsewhere, price schedules
are available data, so an instrumental estimation of price
is unnecessary. Even though household perception of
price remains mysterious, the supplier’s signal is known
to researchers.

2.3. Maximum Likelihood Price

[14] ML estimation can be used to probabilistically assign
a marginal price to a representative consumer either
based on an IV inverse supply function or as a two-stage
procedure simultaneously estimating price and quantity
demanded [Burtless and Hausman, 1978; Herriges and
King, 1994]. The ‘‘discrete/continuous’’ [Hanemann,
1984] or ‘‘endogenous sorting’’ [Reiss and White, 2005]
model is a ML model brought to the arena of water demand
by Hewitt and Hanemann [1995]. The story behind endog-
enous sorting is that consumers select the price region
(block) in which their consumption will lie, then an exact
quantity within the block [Hewitt and Hanemann, 1995].
The method adds a degree of rationality to the price
specification dilemma, but perhaps too much. The informa-
tion demand on the consumer under this model is intense
[Martı́nez-Espiñeira, 2003], and some studies have experi-
enced difficulty deriving a probability estimate that is
positive in the neighborhood of price kinks [Cavanagh et
al., 2002]. That is, observed aggregate quantity decisions
may be assigned negative probabilities, implying that the
representative consumer is irrational. Ensuring the existence
of a cumulative distribution function under such circum-
stances is nontrivial. Furthermore, repeated application of
ML in a dynamic model is computationally demanding
[Reiss and White, 2005].
[15] More fundamentally, when aggregate data are mod-

eled with a ML price, the distinction is lost between the
representative consumer and representative consumption. If
the individual makes a ML consumption decision, the
community consumes across the whole probability distri-
bution. Whether the average consumer enjoys average
consumption depends heavily upon the normality assump-
tion [Hewitt, 2000a]. Although the ML approach is unsup-
portably utility theoretic under incomplete information, it
does offer a helpful framework that will be exploited in a
forthcoming section addressing aggregation issues.

2.4. Quasidifference Price

[16] Assuming that demand for water service is function-
ally related to price and other exogenous variables, the
typical under-identified demand function is

w ¼ w pðwÞ; zð Þ; ð1Þ

where w, quantity demanded in a given period, is
functionally related to p(w), the price index calculated at
w, and other variables, z. Net price changes may fruitfully
be seen as composed of a policy price change and possibly
an endogenous change resultant from a change in quantity
demanded. Although the price faced by any particular
consumer varies with the level of consumption, the nominal
price schedule varies exogenously only when the water
provider decides to vary it. Changes in price due to the
purchasing power of money are also exogenous, but are
withheld from the following discussion for clarity.

[17] Though a price level net of demand-side influences
has proven elusive, price change is separable in the
derivative,

dp

dt
¼ @p

@t
þ @p

@w

@w

@t
; ð2Þ

where
@p

@t
¼ Dp �wð Þ ð3Þ

is the exogenous price difference evaluated at some
consumption level �w.
[18] The form of equation (1) to be estimated is the

annual difference in demand:

Dw ¼ wt � wt�12 ¼ Dw Dp �wð Þ;Dzð Þ ð4Þ

[19] Choice of the point �w depends on the price change
that is to be measured, because price changes are not
generally uniform. A simple reduced form approach is to
evaluate Dp at a single consumption level for all observa-
tions. The reduced form assignment of

�wt ¼ W*; for all t; ð5Þ

is too rigid, though, if consumption is not stationary about
W*. Whenever consumers migrate their consumption out of
the rate block containing W*, Dp(W*) will cease to be a
good estimator of Dp. If instead,

�wt ¼ wt�12; ð6Þ

Dp may be interpreted as the price change that would
have obtained if consumption had remained constant from
the same month of the year before. The interpretation
conforms to both the behavioral model of households
reacting to pricing policy and to the ceteris paribus principle
of statistical inference. The quasidifference estimator is
defined as

Dp ¼ pt wt�12ð Þ � pt�12 wt�12ð Þ ð7Þ

in the linear model, or

Dln p ¼ ln
pt wt�12ð Þ

pt�12 wt�12ð Þ

� �
ð8Þ

in the logarithmic models used in this paper.
[20] The necessity of adopting an annual lag when

monthly data are available follows from the dominance of
seasonal behavior in water consumption patterns. Season-
ality has been modeled with climatic variables [Griffin and
Chang, 1991] and with Fourier harmonics [Renwick and
Green, 2000], but neither method has completely captured
the persistent demand characteristics unique to each month
of the year.
[21] This dynamic form dictates a specific interpretation

of estimated parameters. The implied consumption response
occurs within a single community over the span of 1 year.
Comparisons across communities are no longer applicable,
including the common interpretation of cross-sectional
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variation as a measure of long run adjustment [Kennedy,
2003, p. 211]. Because the differential form implies a price
elasticity of demand for water to pricing policy (and
inflationary) changes within a given community, its impli-
cations are more relevant to projecting and evaluating
incremental local adjustments than basinwide projects with
long horizons, which would benefit from the scope of a
static model. The results of this estimation should not
be used to prescribe an efficient equilibrium pricing
policy because adjustment will commonly take longer than
the 1-year time step emphasized here.
[22] On the other hand, standard structural estimation is

not well suited to applications requiring a finite time
horizon. The price response implied by such models may
take an indefinitely long time to realize. Knowledge of the
time-path of adjustment is necessary to describe optimal
policies that achieve period-by-period utility system goals
such as revenue sufficiency and stability. For example, in
cases of acute capacity constraint such as drought, timing is
a factor, and a policy based on a structural elasticity may not
achieve the desired demand management goal (i.e., a
temporary reallocation) before the drought dissipates. An
elasticity derived from the approach introduced here is
recommended for such applications.

3. Aggregation

[23] The ML endogenous sorting model recognizes that
different consumers make choices that place them in differ-
ent rate blocks [Hanemann, 1984], but the implications for
aggregation have not been well explored. The probability
that a consumer consumes within a rate block is equal to the
proportion of consumers in an aggregate who consume
within that block. This interpretation allows the usual point
estimate of aggregate consumption to be replaced with a
consumption distribution in the formulation of price indices.
When block rates are present in the data, this alternative can
greatly improve the explanatory power of price.
[24] Because all consumers do not simultaneously move

from block to block, a point estimate of representative
consumption and price exaggerates block effects [Shin,
1985]. Schefter and David [1985] observe that the price
faced by the mean consumer may estimate mean price with
bias, especially if the variance of consumption is high. The
distributional symmetry assumption that justifies point esti-
mates of marginal price is tenuous and has been empirically
rejected [Hewitt, 2000a; Schefter and David, 1985]. Distribu-
tion of water consumption over households is asymmetrical
(with median < mean) and truncated at zero, conforming to a
possible gamma or lognormal distribution, as a small number
of households consumes a relatively large amount of water.
Martı́nez-Espiñeira [2003] corrects this bias using additional
information about customer types to weight marginal price
across the community aggregate.
[25] The least precise representation of aggregate margin-

al price under block rates is a point-mass centered at the
mean of consumption multiplied by the price effective at
that consumption level. The most precise is a weighting of
prices by the actual proportion of consumers whose mar-
ginal consumption falls in each block. Lacking agent-level
data, the model employed here uses a distributional assump-
tion in lieu of customer type data. Since the standard

lognormal distribution is asymmetrical, truncated at zero,
and uniquely determined by a single parameter that is
conveniently related to mean consumption, �w, the distribu-
tion of individual consumption levels for each community
in each period is modeled as standard lognormal. A log-
normal distribution of w is consistent with OLS assumptions
on

lnw ¼ b ln Xþ e; ð9Þ

which is the general form on which the present analysis is
based. The aggregate quasidifference price variable is
therefore a quasidifference operation on a linear combina-
tion of prices weighted by a block consumption probability
function assumed to be standard lognormal with a mean at
the data point �wt. The assumption of lognormality is much
cruder than the sorting devices proposed in the ML models,
suggesting that even more precision could be achieved by
refinements of the weighting function.
[26] Let F(w) be the cumulative distribution of a standard

lognormal function whose mean is �wt. Given block rate
function P(w) = {pi : xi�1 < w < xi}, where w is partitioned
into N blocks by x (x0 = 0, xN = 1), the aggregate price
index is defined as

p ¼
XN
j¼1

pj F xj
� �

� F xj�1

� �� �
: ð10Þ

[27] The procedure is analogous to probability weighting
of time-of-day electricity prices [Hausman et al., 1979].
Choice of the partition x is straightforward for the calcula-
tion of marginal price. All consumers in the same rate block
do not share a common average price, however. In the
calculation of aggregate average price, x is defined in
increments of 500 gallons up to 50,000 gallons, and a mean
average price is calculated for each interval. To construct
the aggregate quasidifference price, both the contempora-
neous and the lagged price functions are weighted by the
same distribution and then differenced.

4. Empirical Model

4.1. Dynamic Specification

[28] Most empirically estimated water demand equations
have been static. Unfortunately, dynamic studies that have
tested the significance of the contemporaneous price vari-
able have found its effect to be insignificant during non-
summer months [Lyman, 1992], inconsistent across models
[Agthe and Billings, 1980], and insignificant or unexpect-
edly close to zero [Carver and Boland, 1980]. Investiga-
tions of natural gas [Balestra and Nerlove, 1966] and
electricity [Bushnell and Mansur, 2005] have also suffered
from weak results. Low significance levels in contempora-
neous price are consistent with the hypothesis of incomplete
information, which would imply a learning process over
time [Carver and Boland, 1980].
[29] Nauges and Thomas [2003] provide a more reveal-

ing dynamic analysis that estimates a statistically significant
short-term elasticity of -0.26. Although their study is
focused on cross-sectional heterogeneity, an issue set aside
in the current research, it is exemplary in the sense of
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incorporating additional information on pricing practice
unique to the region under study.
[30] The price elasticity actually measured by static

equations is typically cross-sectional elasticity [Balestra
and Nerlove, 1966]. It can be argued that this is a measure
of the longest adjustment term, over which habits and stocks
of water-demanding capital have tended more completely to
evolve to equilibria. Such a horizon is too long to serve all
types of policy analysis, however, as suggested above. In
contrast, an annual elasticity is sought here. Although a
wider range of results are obtained, the central question are,
‘‘What is the percent change in consumption over 1 year
following a uniform 1% rate change or its equivalent?’’

4.2. Flexibility

[31] Quantity-dependent pricing implies highly informed
consumers would perceive a nonlinear budget set, then
inferring idiosyncratic hypotheses about the resulting price
elasticity. In particular, price elasticity is expected to
vary with income level, especially for a subsistence good
[Dalhuisen et al., 2003]. The limited available evidence
suggests that price elasticity is also sensitive to climatic
conditions in nontrivial ways [Griffin and Chang, 1991].
Nevertheless, many empirical estimates use the simple log-
linear functional form (equation (9)), which imposes constant
elasticity. In this instance, a generalization of equation (9)
is employed that allows a second-order interaction among
the covariates (XI), based on the translog functional form
[Christensen et al., 1973]:

ln w ¼
XI

i¼1

bi lnxi þ
XI

i¼1

XI

j¼1

gij
2
lnxi lnxj þ e: ð11Þ

[32] Note that the quadratic terms of the full translog
model are excluded. While the model indicated by
equation (11) is more flexible than that that of equation (9),
it is not a globally or even locally flexible form.

4.3. Price Elasticity

[33] To distinguish price effects, equation (11) may be
rewritten as

lnw ¼ bpln pþ
XI

i¼2

bi ln xi þ
XI

i¼2

gpi ln p ln xi

þ
XI

i¼2

XI

j¼2

gij
2
ln xi ln xj þ e: ð12Þ

[34] Introducing a temporal element and taking the first
difference produces

Dlnw ¼ bpDln pþ
XI

i¼2

biDln xi þ
XI

i¼2

gpiD ln p ln xið Þ

þ
XI

i¼2

XI

j¼2

gij
2
D ln xi ln xj
� �

þ n: ð13Þ

[35] Equation (13) is the estimating equation for the
empirical analysis of the next section. Since an expression
for the ceteris paribus price effect on the quantity of water
demanded is sought, Dln xi = 0 is stipulated for each i-th

covariate when calculating price elasticity. Note that, for
each term in the second summation,

gpiD ln p ln xið Þ ¼ gpi ln pt ln xit � ln pt�1 ln xit �Dln xið Þ½ �
¼ gpi Dln ptln xit þ ln pt�1Dln xið Þ: ð14Þ

[36] Thus (13) reduces to,

Dlnw

Dln p
¼ bp þ

XI

i¼2

gpi ln xi þ n: ð15Þ

[37] In the limit, for small changes,

h ¼ bp þ
XI

i¼2

gpiln xi ð16Þ

is the own-price elasticity of demand. Constant elasticity is
confirmed if gpi = 0 for every i 2 I.

5. Data

[38] The original data for this application consists of
monthly water supply series for 385 Texas communities
(serving 5.6 million Texas residents). Water use data are
provided by the Texas Water Development Board, and
corresponding water and sewer service rates are provided
by the communities themselves per request. Of 1406 com-
munity water providers considered, 734 responded to
mailed inquiries seeking water and sewerage rate structures
for a 5-year period. Raw data expressed in nominal dollars
are corrected for inflation in the analysis.
[39] Due to the lag structure of the proposed model, only

those communities for which supply and price series are
complete from January 1999 to December 2003 are consid-
ered further. The 385 
 60 panel contains 23,100 elements
of which 20% are expended in support of the lag structure.
Twelve additional observations are excluded because the
marginal price changed from zero to a positive quantity over
the year, resulting in an undefined log difference. In other
cases (<1% of data) where price remained at zero in both
periods, log price difference is redefined to be zero. On the
basis of comparisons of community size and monthly usage,
the sample is representative of the targeted population
although the high variance of both of these measures
reduces their ability to verify sample selection bias.
[40] Personal income statistics from the Bureau of Eco-

nomic Analysis (www.bea.gov/regional/reis/) and climate
data from the National Climatic Data Center (NCDC;
www.ncdc.noaa.gov/) augment the data. Personal income
is aggregated at the county level, with 156 counties repre-
sented, or at the metropolitan level of larger cities for which
income data are available. Daily temperature and precipita-
tion data are matched by proximity to the nearest NCDC
cooperative weather station, usually in the same county as
the system observation. All dollar amounts are normalized
to December 2003, using the Urban South CPI measure-
ment (www.bls.gov/data/). Data are summarized in Table 1.
The log difference transformations of the data are summa-
rized in Table 2.
[41] Figures 1 and 2 illustrate the variation in water price

over the sample. The wide variation in price measures

W08420 BELL AND GRIFFIN: QUASIDIFFERENCE WATER PRICE ELASTICITY

5 of 9

W08420



provides an advantage in estimation over more geographi-
cally limited studies, in that the estimated expression for
price elasticity may be confidently generalized over a wider
range of price levels. The degree of variation in the other
regressors supports the maintained hypothesis that individ-
ual (cross-sectional) effects are random across the sample.

6. Results

6.1. Log-Linear Model

[42] The centerpiece of this econometric investigation is
estimation of a multidimensional elasticity function. How-
ever, simple log-linear regressions are performed ahead of
the more flexible central regression to guide the selection of
independent variables. Additional findings are consequently
generated. Variables included in the preliminary regressions
are average water price, marginal water price, average sewer
price, marginal sewer price, monthly income, mean mini-
mum daily temperature, mean maximum daily temperature,
and number of days in the month with less than 0.25 inches
of precipitation. The regressed values in each case are the
annual differences in logarithms of variable levels.
[43] It has been argued that the nonlinear price schedule

creates a secondary income effect that ought to be measured
[Nordin, 1976]. The ‘‘Nordin difference’’ expenditure var-
iable (which is not in any way related to the quasidifference
introduced here) has not been included, primarily because
the assumptive base for identifying such a variable in
aggregate data is too tenuous. This choice is also justified
ex post by the insignificance of the primary income vari-
able, as will be seen below.
[44] Final selection of price variable is determined by

comparing a marginal price model with an average price
model using the Akaike Information Criterion or the
Schwarz Criterion, both of which are in this case equivalent
to finding the specification with the lowest sum of squared
errors. Additionally, since parsimony is improved if water
and sewer prices can be combined or if minimum and
maximum temperatures can be averaged prior to estimation,
both of these hypotheses are tested.
[45] Results of the log-linear estimations are shown in

Table 3, with marginal price variables included in Model 1
and average price variables in Model 2. The lower infor-
mation criteria corresponding to Model 1 indicate the

slightly better fit. On this comparative basis, marginal price
is adopted as the price index of the central analysis.
The marginal sewer price index, however, is insignificant.
For many systems in the sample, marginal price for
sewer service is zero in nonwinter months due to many
utilities’ policies of setting sewer cost ceilings or applying
‘‘winter averages’’. The insignificant coefficient may indi-
cate that consumers are not aware of these practices. Even
considering months where marginal sewer price is strictly
positive, the t-statistic for the corresponding coefficient is
only -0.35. Consumption is apparently unresponsive to
marginal sewer pricing. This variable is not included in
the central regression.
[46] An alternative, nested test of water price specifica-

tion is proposed by Shin [1985]. Here both average price
and marginal price variables are included in the same
regression. Interpretation of the marginal price and average
price coefficients as (1–k)b and kb, respectively, allows a
measure of the relative influence of marginal and average
price on the consumption decision [Shin, 1985]. Parameter
estimates for this regression are not reported, though we
apply Shin’s procedure. For water, we obtain k = �0.76. On
the basis of k < 0.5 for water service, marginal price is
indicated as more influential than average price. The
corresponding value of k = 2.89 for sewer service supports
the average price specification for sewerage. Bearing in
mind that 0 < k < 1 in a well-specified Shin test, these
results are curious.
[47] The hypothesis that the effect of an increase in daily

low temperature is equivalent to the effect of an increase in
daily high temperature is rejected. Both variables are
included in the more flexible regression.
[48] The existence of an income effect is rejected. An

unfortunate characteristic of the income data is that the
variation is cross-sectional except for the CPI normalization,
and is therefore unnoticed by this procedure. It is plausible
that income is insignificant because of slow aggregate
response to income change, but it is more likely in this
case that the income measure is simply too broadly aggre-
gated to identify accurately the spending power of a single
community. Perhaps a refined monthly income measure
would produce better results. Income is not included in
the following regression.

6.2. Log-Nonlinear Model

[49] The final regressors are differences in logs of mar-
ginal water price, average low temperature, average high
temperature, and number of days without precipitation, as
well as the differences in products of each pair of indepen-

Table 1. Summary Statistics, N = 23100

Variable Units Mean
Standard
Deviation

Volume per capita
per day

liters 540.3645 267.2517

Marginal water price 2003 USD/kliter 0.6607 0.2966
Marginal sewer price 2003 USD/kliter 0.1466 0.2314
Average water price 2003 USD/kliter 1.1242 0.5506
Average sewer price 2003 USD/kliter 0.4356 0.4215
Monthly personal
Income

2003 USD 2158.2780 499.6223

Average minimum
temperature

�F 55.3835 14.0675

Average maximum
temperature

�F 78.2141 13.2448

Days in month with
no precipitation

days 27.1997 2.7631

Table 2. Summary of Differences in Logs, N = 18468

Variable Mean
Standard
Deviation

dlnw �0.0141 0.2658
dlnMP (water) 0.0066 0.0980
dlnMP (sewer) 0.0012 0.0691
dlnAP (water) 0.0041 0.0776
dlnAP (sewer) 0.0084 0.0936
dlnPI 0.0010 0.0276
dlnTmin �0.0057 0.0916
dlnTmax �0.0086 0.0775
dlndry �0.0020 0.1862
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dent variables’ logarithms. The results of this central re-
gression are summarized in Table 4. Because of the inclu-
sion of the interactive product regressors, the intuitive value
of Table 4 is limited, although the strong significance of
these interactive terms justifies the use of the more flexible
functional form. In particular, the significance of the price
interactions allows the rejection of the hypothesis of con-
stant price elasticity across the sample. The Breusch-Pagan
statistic of 1.51 for this regression (p = 0.219) fails to reject
the null hypothesis of homoskedasticity.
[50] Applying the coefficients in Table 4 to equation (16)

results in the elasticity equation,

h ¼ 1:290þ 0:190 log tmin � 0:439 log tmax � 0:081 log d ð17Þ

Each of the individual coefficients is significant at the 99%
level. Demand for water service is more elastic when daily

high temperature is higher or when more days of the month
pass without precipitation. Demand is less elastic when
daily low temperatures are higher. The magnitude of the
coefficient on high temperature is higher than that on low
temperature, implying that hotter months see an increase in
price elasticity (more elastic demand).
[51] Price elasticity evaluated as a linear combination of

variable levels and regression coefficients is found to
have a mean of -0.127. The standard deviation of h,
estimated using the regression standard errors and vari-
ance-covariance matrix is 0.0188, implying that demand
is inelastic but significantly downsloping at the mean.
The estimate is consistent with other recent research on
short term elasticity [Martı́nez-Espiñeira, 2004; Renwick
and Green, 2000]. It is somewhat lower in absolute value
than most cross-sectional static models [Dalhuisen et al.,

Figure 1. Distribution of observed marginal water prices.

Figure 2. Distribution of observed average water prices.
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2003], consistent with the hypothesis of adjustment lags
greater than 1 year.

7. Summary

[52] Fully informed and rational consumers will use water
until the monetized marginal benefit of the next unit is equal
to its marginal price. Yet, price and quantity information is
dimly available to water customers, and these consumers
cannot improve their information conditions without expe-
riencing costs. Imperfectly informed consumption behavior
is therefore the norm. Less informed consumers may be
expected to optimize with respect to a lower information
price index, for example average price. Although Shin
[1985] provides a test of relative explanatory power be-
tween two proposed price indices, the test results are only
meaningful if both indices consistently represent the theo-
retical quantities they purport to represent. Prices based on
observation or on the usage of a representative consumer are
endogenous and not necessarily unbiased.
[53] Prices constructed as instrumental variables can be a

poor fit because strong instruments are generally lacking.
Continuous, linear pricing is characteristic of IV prices but
not of the actual price-setting process. Maximum likelihood
prices are not guaranteed to be fully defined throughout the
range and do not aggregate well to the community level. If a
complete rate history is known, an alternative strategy is to
calculate the difference in a defined price index for each
consumption level before and after a rate change. In the case
of aggregate data, these hypothetical differences should be
weighted by the probability density of each consumption
level. We assume that consumption is distributed standard
lognormally and weight the prices corresponding to each
block by the probability density of consumption in the
block. A tradeoff of operating in differences is that cross-
sectional variation in variable levels disappears, limiting
application of the results to annual adjustments. This
idiosyncrasy can be put to good use, however, given the
thinner water demand literature on adjustment over time.
[54] A comparison of information criteria for log-linear

regressions on quasidifferenced marginal and average prices
indicates that marginal price change is more influential than
average price change. Sewer price changes are not shown to
be significant, nor are income changes. An equation of
marginal price elasticity of demand is derived from a more

flexible regression of annual change in monthly water use
on changes in marginal price, mean low temperature, mean
high temperature, and number of days without significant
precipitation.
[55] The data are an original set of system-level price,

quantity, income, and climate observations for 385 systems
in the state of Texas, USA. The data set is remarkable due to
its volume and the variety of systems polled, water pro-
viders for millions of Texans. Own-price elasticity is shown
to vary with climatic conditions. The derived mean price
elasticity of -0.127 in the first year is plausible in relation to
previous research. It is less elastic than most structural
estimates of long-run elasticity, implying an adjustment
period longer than 1 year.
[56] As water demand adjustment behavior remains in-

completely understood, further research that demonstrates
both shorter and longer demand patterns in an integrated
way would contribute significantly to modeling and policy-
setting efforts. A fundamentally elusive element is the
decision mechanism of the retail water consumer. Since
neither marginal price nor average price appears to capture
this mechanism fully, developing and testing of new price
indices is to be anticipated. In further research on aggregate
demand under block pricing, more consistent and represen-
tative price indices could be developed by incorporating
probabilistic methods from endogenous sorting models
previously applied only to microdata.
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