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ABSTRACT. Monthly demand for publicly supplied
water to U.S. residences and businesses is estimated
from a 10-year panel of 167 cities. A periodic error
correction model integrates monthly, annual, and
long-run time scales. Statistical consistency is vali-
dated by unit root tests adapted to the monthly fre-
quency. Water and wastewater price elasticity of
demand is estimated by sector, calendar month, and
time horizon. (JEL Q25)

I. INTRODUCTION

Local media have applied the phrase “wa-
ter crisis” so often in describing the condition
of some city that it has become cliché (Russ
2009; Cregan 2009; Evans 2009; Bond 2009).
Despite the sensationalizing rhetoric, excess
demand for publicly supplied urban water per-
sists in many places and is arising in others.
The resulting management issues underscore
the troubled and oft-politicized nature of wa-
ter planning. Urban water supply is naturally
monopolistic due to its high capital require-
ments. Therefore, an assumption of the invis-
ible hand theorem is unmet, and socially
efficient allocation is not automatic. Most de-
cision making is conducted by public water
authorities, which do not have a strong track
record of efficient adaptation (Grafton and
Ward 2008; Lach, Ingram, and Rayner 2005;
Hewitt 2000). Yet, experimentation, along
with progress, is slowly occurring. Among the
policy mechanisms being tried are alternative
rate structures and higher rates. Perhaps rates
that include water’s opportunity costs will
eventually be explored, as recommended by
economists. If these approaches are to be suc-
cessful, planners and regulators require con-
sumer demand information to simultaneously
establish rates and anticipate the level of water
deliveries.
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Traditionally, water utility systems have
focused narrowly on adjusting water supply
to meet level-price water demand (Dziegie-
lewski 1999). Still, efficient supply enhance-
ment requires knowledge of future aggregate
demand, and carelessness over either revenue-
seeking or efficiency-seeking changes to wa-
ter and wastewater prices may lead to error in
demand projections. Even under perfect in-
formation, the costs of supply enhancement
continue to rise as the most accessible sources
of water are tapped to capacity or depleted,
necessitating rate changes that subsequently
affect quantity demanded. These increasing
costs further advance the value of traditionally
underemployed demand management strate-
gies, including efficient pricing.

Pricing, or rate-setting, is complicated by
the balancing of multiple objectives. Unlike
the textbook monopolist, the typical water
utility system does not pursue the objective of
profit maximization. In addition to economic
efficiency, water utilities seek goals such as
revenue sufficiency and fairness (Griffin
2006, 251), and they rank these more highly
than efficiency. While public authorities
commonly infer that their rate-setting efforts
pursue multiple goals simultaneously, the Tin-
bergen principle warns that each goal requires
a separate instrument (Young and McColl
2005). Moreover, achieving multiple goals in-
volves the solution of a complex set of system
objectives, which requires detailed knowledge
of demand behavior. For example, when ef-
ficiency and revenue sufficiency are conjunc-
tively sought, an efficient marginal rate may
be derived from supply information alone, but
the calculation of other rate components re-
quires an estimate of future billed volumes
(Griffin 2001; Edwards 2006). For demand
management policies to improve, analytical
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techniques for estimating demand must
evolve to support them.

Econometric estimates of residential de-
mand for water abound (Dalhuisen et al.
2003), but existing demand estimates lack the
detail to support many rate design applica-
tions. A time-path of adjustment to consumer
equilibrium is seldom explicitly estimated in
prior econometric work; seasonal patterns of
demand tend to be underrepresented; and the
important commercial and industrial sectors
of demand are often set aside or assumed to
be proportionally linked to residential use.
Water management policies that fail to con-
sider the time-path of adjustment risk outpac-
ing consumers’ ability to develop new habits
or optimize their stocks of water-associated
capital, such as landscaping, plumbing fix-
tures, and appliances. Policies without sea-
sonal considerations risk incurring excess
demand during cyclical demand peaks. Poli-
cies that fail to differentiate between house-
hold demand and commercial demand risk
decreased efficiency relative to sector-tailored
policies. The empirical results of this research
indicate that slow adjustment, seasonality, and
sectoral sensitivity are all characteristic of the
sample. Simpler models that are unable to ac-
commodate these characteristics are therefore
misspecified to some extent.

The present research incorporates a de-
mand function into a dynamic consumption
model using the error correction (EC) tech-
nique, thereby merging both short- and long-
run demand drivers and possibly improving
forecast accuracy (Engle, Granger, and Hall-
man 1989). Seasonal demand behavior is
modeled by identifying and accounting for pe-
riodic integration in the associated series
(Boswijk and Franses 1995a). Commercial
and industrial contributions to aggregate de-
mand are modeled by including sectoral in-
tensity factors in the estimating equation.
Unlike dynamic water demand studies consid-
ering only a single locale, the present research
includes original data from a panel of 167
geographically dispersed cities within the
United States, observed monthly from Janu-
ary 1995 through December 2005. The
breadth of the sample allows a model to be
fitted over a wider range of conditions than
previously possible. The multitude of com-

munity cross sections allow a uniquely statis-
tical look at the problem of nonstationarity in
quantity demanded.

II. DEVELOPING THE THEORETICAL
MODEL

Structural and Dynamic Demand

The object of most econometric water de-
mand research is a demand function for water,
which is a mapping of consumption quantities
over the range of possible prices and other
variables. For convenience, the relationship
between price and quantity demanded is often
characterized by a price elasticity scalar. Such
demand functions rely on mathematical struc-
ture implied by microeconomic theory, so
they are called structural models as opposed
to statistical models, which are theoretically
unrestricted. The early structural models were
well suited to examining the belief held by
noneconomists that rates do not affect use
(Howe and Linaweaver 1967). The persistent
testing and rejection of this hypothesis by
economists is a contribution of our literature
(Espey, Espey, and Shaw 1997), albeit only
haltingly applied to policy. The same models
are pivotal to the determination of consumer
valuation that is necessary for thorough policy
and project appraisals, because it is the de-
mand function that identifies the marginal
benefit of price and quantity changes.

It is unlikely, though, that water consumers
instantaneously adapt to demand perturba-
tions such as price and weather shocks (Grif-
fin and Mjelde 2000; Carver and Boland
1980). During periods of adjustment to new
conditions, consumers are constrained by
their learned behaviors (habits) and by their
inventories of water-associated durable
goods, for example, appliances and landscap-
ing. While adjusting, customers can experi-
ence nonzero excess demand in the sense that
the quantities they demand would not be op-
timal in a longer view during which habits and
durable possessions can be refined. A demand
correspondence is not a demand function if
multiple consumption quantities can be
mapped to the same argument values, so the
structure supporting the typical static demand
model can lead to conflicting results in a dy-
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namic context. Conversely, the dynamic de-
mand correspondence offers little insight into
consumer welfare or willingness to pay.

The inclusion or omission of an adjustment
process separates the time-independent water
demand models from the dynamic models.
The former class contributes insights primar-
ily at longer time horizons, whereas the latter
may more accurately model short-run behav-
ior. A structural model can utilize slow-mov-
ing variables that either do not vary or are not
measured monthly, just as a dynamic model
can incorporate seasonal changes that are in-
significant or average out in the long run (En-
gle, Granger, and Hallman 1989). In contrast
to the literally hundreds of structural water de-
mand studies stand only a handful of dynamic
demand studies (Bell and Griffin 2008a; Ful-
lerton and Elias 2004; Nauges and Thomas
2003), although some essentially structural
studies have employed the flow-adjustment
hypothesis to deduce an adjustment rate (Ly-
man 1992; Carver and Boland 1980).

Regardless of the comparative advantages
of the two approaches, the possibility that
forecasts from a structural model may contra-
dict those from a dynamic model creates a ten-
sion between them (Engle, Granger, and
Hallman 1989). A dynamic model may be the
preferred tool for balancing the objectives of
controlling water use and covering production
costs year to year, but only a structural model
can be interpreted as a demand function. For-
tunately, advancements in statistical treatment
of time series now allow the simultaneous en-
joyment of both sets of advantages. The in-
tegrated model proposed below will be used
in the next section to estimate the demand for
water in U.S. cities and to predict 12 monthly
consumption quantities beyond the estimation
sample. The model will also facilitate testing
for monthly seasonality and instantaneous
adjustment.

EC and Periodic Cointegration

The empirical model developed here is an
extension of a model in first differences pre-
viously used to project annual changes in
quantity demanded (Bell and Griffin 2008a).
A shortcoming of the earlier application is its
omission of a force summoning consumer

equilibrium. Even though excess demand is
not expected to be identically zero in any par-
ticular time period, its tendency toward zero
is as omnipresent as individual self-interest,
in the sense that individuals are not content
with states of nonzero excess demand. Inclu-
sion of a lagged expression of excess demand
turns the difference model into an EC model
(Engel, Granger, and Hallman 1989).

Excess demand reflects an imbalance that
can be improved upon, an error to be cor-
rected. A condition of excess demand implies
that a higher level of aggregate utility could
have been achieved at the same expenditure
level with a different stock of capital or in-
formation; thus excess demand is not stable.
Although the mechanisms and information re-
quirements for rational consumers to resolve
their ideal consumption bundles are not ex-
plicitly identifiable, the assumption that a lo-
cally stable structural demand exists implies
that all solution paths starting from small lev-
els of excess demand converge to points on
the structural demand curve (McKenzie 2002,
56). Because utility systems set rates in ad-
vance of realized demand, convergence im-
plies adjustments in quantity demanded. In a
linear EC model, the speed of convergence is
represented by the coefficient of the EC vari-
able. If the EC coefficient is positive, the sys-
tem is explosive. If the coefficient is equal to
�1, full correction takes place in one time
period. If the coefficient is in the interval
(0, �1), correction takes longer than a single
period.

It is necessary for the consistency of the
model that the EC term is stationary—that its
conditional means are distributed about its
sample mean—since the dependent variable is
presumed to be stationary. The lagged EC
term, which is the lagged residual of a struc-
tural demand function, may not in fact be sta-
tionary if the dependent variable of the
structural model is not stationary. If this is the
case, the residual will be consistent only if the
structural model is cointegrated (Juselius
2006, 86). If the left- and right-hand sides of
a regression model are cointegrated, their re-
spective lacks of stationarity have canceled
each other, so they are “superconsistent” with
respect to each other, and their residual will
qualify as a valid EC regressor. Stationarity is
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relative, however—“a convenient statistical
approximation” (Juselius 2006, 20)—so it is
important not to assign too much weight to
the various tests of cointegration, the unit root
tests. Superconsistency is not necessary for
consistency of EC parameter estimates, and
mere consistency can be tested ex post.

Water consumption patterns may exhibit
seasonality, an attribute of many macroeco-
nomic series for which new modeling tech-
niques have been proposed within the
cointegration literature. The technique of sea-
sonal cointegration dictates the inclusion of
multiple EC terms corresponding to multiple
seasonal lags (Kunst 1993). Seasonal cointe-
gration is mathematically appealing when the
frequency of the data is quarterly, but much
less so when the frequency is monthly. As the
mathematical and computational require-
ments increase, economic interpretation of the
results becomes more elusive. An alternative
is periodic cointegration (Boswijk and Fran-
ses 1995a). Periodically cointegrated series
are bound by a vector of coefficients that vary
from season to season. In the case of monthly
data, periodic cointegration is represented by
a vector of 12 separate variable combinations,
one for each calendar month. It has been es-
tablished that a pair of series cannot compose
a valid cointegrating relation in one season
without being cointegrated in every season
(Castro and Osborn 2008). In addition to an
annual cycle, water demand may exhibit cy-
cles longer than one year, but we will leave
the possibility to further research. Some com-
munities may experience seasonality that is
only approximately annual in frequency, and
this characteristic would be better modeled
by seasonal integration than by periodic
integration.

Use of the EC model has a single, recent
precedent in the water demand literature. Mar-
tinez-Espineira (2007) illustrates well the dif-
ficulties of seasonal cointegration. Nine years
of monthly data on a single community are
further collapsed into quarterly observations
to circumvent the daunting procedure of si-
multaneously testing stationarity in 12
monthly frequencies. Results of the battery of
diagnostic tests are generally consistent but
not definitive due to both the small sample
size and the low power of existing unit root

tests. Martinez-Espineira’s paper is neverthe-
less a milestone in terms of introducing EC to
water demand modeling that is extended here
in data scope, variable sophistication, and use
of the periodic EC alternative.

The object of the present research is com-
munity demand for publicly supplied water.
The water demanded in the sample is deliv-
ered by a sole or majority supplier. Commu-
nity demand is not synonymous with
residential demand inasmuch as businesses as
well as residents demand water within the
community. Even though it is recognized that
water consumption is not entirely residential,
an expedient practice when using aggregate
data is to simplify analysis by representing the
dependent variable as the ratio of quantity de-
manded to population (for a recent example,
see Ruijs, Zimmermann, and van den Berg
2008). Such a practice raises questions about
the role of commercial and industrial activity
in aggregate demand. The assumption that the
extent of commercial and industrial water de-
mands is proportional to population is
stronger and less appealing than the assump-
tion that the extent of residential demand is
proportional to population, especially with re-
spect to a diverse cross section of cities.

Nevertheless, a demand-per-capita depen-
dent variable facilitates the planning conven-
tion of multiplying per capita demand by
projected population. More generally, it sepa-
rates intensive from extensive community de-
mand growth, allowing a population-free
intensive demand comparable to the results of
a household-level study. Potential and prac-
ticed applications of community water de-
mand are many and varied, so a flexible
representation has the advantage of interop-
erability. In this spirit, the community demand
model estimated in this research includes sec-
toral intensity factors as independent vari-
ables. By considering the extent of
commercial and industrial activity (in dollars)
per capita, the model incorporates more sec-
toral information without sacrificing the ad-
vantages of an intensive dependent variable.

Price Specification

Because of the complexity of typical water
rates and the absence of a true market for pro-
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cessed water, the rates of exchange for water
cannot be called market prices. For a given
utility system and client there is, however, a
cost of the marginal unit of water, dw, that
influences residual income, m. If that marginal
cost is designated p then it is equal to the ratio
of the change in income, dm, to dw:

dm
p � . [1]

dw

If p were known, it would enter an individual
demand function, , with income and other�
prices, P:

w � �(p,P,m), [2]

under the usual assumption of utility-maxi-
mizing water consumers operating in an
environment of costless transactions. This is
the perfect information rationale for using
marginal price as an argument of an empirical
demand function.

On the other hand, marginal price is gen-
erally unknown to the consumer (Foster and
Beattie 1981a). By one estimate, fewer than
10% of utility customers are aware of the mar-
ginal price of service they face (Carter and
Milon 2005). Most water customers receive
total consumption and total expenditure in-
formation in their periodic bill, but marginal
price information is difficult (costly) for con-
sumers to access. Consumers have been found
to respond less to marginal prices that are not
included in the bill (Gaudin 2006). Modern
water rate schedules can be complex, and they
may be available only online or not at all, as
opposed to being transparently identified
within bills. It is plausible, then, that at least
some consumers may attempt to decide con-
sumption based on average price, which is es-
sentially marginal price measured with error
due either to fixed charges, a variable mar-
ginal rate (as with block rates), or both. Pro-
ponents of the average price specification are
willing to accept a more complex model of
consumer behavior to gain explanatory power.

Choosing a price metric is not a casual de-
cision, because marginal price and average
price are not generally simultaneously consis-
tent within the boundaries of ordinary least

squares. For example, if is a utility-maxi-�
mizing demand function and the linear
specification

w � � � �p � �m � �P [3]

is a consistent estimator of , then� w �
is also utility-maximizing as� �(ap,P,m)

long as

w � � � �ap � 	m � 
P [4]

is consistent. Even in the case that average
price, ap, is computed from a relatively simple
rate schedule with a fixed charge, k, such that

pw � k
ap � , [5]

w

[3] and [4] cannot coexist, since [4] implies

k
w � � � �p � � � 	m � 
P. [6]� �w

With k and w both variable, either �0,�
which implies the spurious result that �0,�
or , which implies that [3] is inconsistent� �0
(as well as heteroskedastic). Admittedly, a
maximum-likelihood pair of quadratic conju-
gate solutions to [6] could be found; but their
error structure would be indeterminate, and
estimation would be arduous. Reconciling the
two price metrics becomes even more com-
plicated as less linear functional forms and
more involved pricing policies are considered.
Because of this inconsistency, advocates of
marginal price specification do not always ac-
cept average price as a legitimate alternative
specification (Griffin, Martin, and Wade
1981).

It is tempting to pose the question of price
perception as a dichotomy between marginal
price and average price. Arguably, only mar-
ginal price leads to efficient decision making,
yet how can consumers respond to a marginal
cost that is unknown? The juxtaposition need
not be a dichotomy, though. One alternative
is to explicitly model efficient decision mak-
ing as a balance between how much water to
consume and how much effort to expend in
understanding rates. Empirically, this ap-
proach is likely to require additional data per-
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taining to effort expenditures and approaches
to information discovery by consumers.

Another alternative is to take marginal
price as the theoretical limit of price percep-
tion applicable to equilibrium consumption,
and average price as the month-to-month
price metric of least cost. An implication of
this “dim perception” model of marginal price
is that price knowledge becomes a learning
process. Adaptation to a new marginal rate
may take months or years (Bushnell and Man-
sur 2005). In the meantime, customers may
rely on the more accessible average price es-
timate. This research takes the second alter-
native, essentially specifying a marginal-price
demand function within an average-price dy-
namic consumption equation. Among other
benefits, this tack allows the demand function
to be interpreted in a standard way by welfare
applications without making strenuous as-
sumptions about perfect information. Our
choice of price specifications is thus made on
theoretical and practical grounds, rather than
on the strictly empirical basis suggested by
some (Foster and Beattie 1981b).

Aggregation

Aggregation of the community demand
function means treating thousands of individ-
ual choices as a single decision. When rates
are multitiered (block rates), these choices in-
clude both quantity and price components.
One way to match up quantities and prices is
to study microdata on individual households
and businesses. Observing household budget-
ing decisions has theoretical appeal, but it is
not as informative for policy or project eval-
uation as direct observation of the community
aggregate, and it magnifies statistical endo-
geneity (Shin 1985). The latter weakness is a
consequence of predominately increasing
block rate structures, leading to consumption
neighborhoods wherein a small positive
change in quantity will accompany a large
positive change in price, spuriously diluting
negative price effects.

An alternative to surveying every house-
hold and business within a community is to
treat the mean of consumption as a point-mass
serving as the representative consumer. In this
research, the representative consumer is ac-

tually a distribution of consumption levels
mapped onto the price schedule. The proce-
dure originated with Schefter and David
(1985) and has been employed with some suc-
cess recently (Diakité, Semenov, and Thomas
2009; Bell and Griffin 2008a; Martinez-Es-
pineira 2003). The introduced distributional
information smooths abrupt endogenous price
changes while including more of the complex
price schedule in a scalar price metric and ac-
knowledging differential effects of rate
changes on people operating in different
blocks. Distributed consumption seems con-
siderably more realistic than point-mass con-
sumption, even though additional and
potentially ad hoc distributional assumptions
are usually required.

III. BUILDING THE EMPIRICAL
MODEL

The Sample

The data consist of originally compiled
monthly consumption, price, demographic,
and weather observations on 167 U.S. cities,
each with population exceeding 25,000. The
sample spans nine states (Alaska, California,
Florida, Indiana, Kansas, Minnesota, Ohio,
Texas, and Wisconsin) and the time horizon
1995 through 2005, for 132 possible monthly
observations per city. Although expansive, the
scope of the sample is constrained by the
availability of historical water deliveries data,
which is determined by state reporting pro-
tocols. Compared with a balanced panel of
22,044 observations, the data are 76% com-
plete, with 16,804 observations. Summary
statistics are given in Table 1. A detailed ac-
count of data collection and data characteris-
tics has been provided by Bell and Griffin
(2008b), but a few highlights follow.

Price observations were gathered through
electronic and personal contact with over
1,000 municipal and state agencies nation-
wide. Water prices for 37,159 observation-
months in 319 communities were obtained,
with sewer prices for 23,060 observation-
months in 210 communities. Missing sewer
price observations in the sample panel are es-
timated from a univariate regression on water
prices. Price and cost variables in the analysis
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TABLE 1
Summary Statistics

Variable Units Obs. Mean Std. Dev. Min. Max.

Daily Use mGal 16,804 27.4 68.1 0.034 1,340
Population thousands 16,804 141.7 355.6 27.6 3,828.5
Commerce $million 16,804 2,447.6 6,640.2 142.7 81,900.0
ResPrice $/kGal 16,804 2.65 1.57 0.00 10.09
CommPrice $/kGal 16,804 3.14 1.58 0.00 12.24
ResFixed $/month 16,804 17.39 18.53 0.00 302.00
CommFixed $/month 15,728 70.38 99.38 0.00 1,132.38
CPI rel. 1982 16,804 1.746 0.128 1.503 1.992
PPI (BMNR) rel. 1982 16,804 1.395 0.111 1.25 1.736
Income $000/year 16,804 22.85 6.81 9.46 53.23
MinTemp degrees F 16,734 53.13 53.62 �3.74 81.84
MaxTemp degrees F 16,734 73.72 16.40 11.39 111.58
DryPart proportion 16,733 0.797 0.014 0.00 1.000

are sums of water and sewer prices and costs.
Residential prices are those charged to 0.75
inch connections, and commercial prices cor-
respond to 2 inch connections. As illustrated
in Table 1, the biggest difference between the
two schedules tends to be the magnitude of
fixed charges.

Within the price sample, an average of
1,200 gallons per month is allowed per resi-
dential customer and an average of 2,700 gal-
lons per business at no marginal charge.
Approximately 85% of utility systems bill
monthly, with the rest billing bimonthly or
quarterly. Fixed charges are lowest on average
in New England, although the region is not as
well represented as South, West, and Midwest
regions in the price dataset. Marginal prices
are lowest in the West, perhaps paradoxical
for a region associated with increased water
scarcity, but reconcilable given the conven-
tional focus of rate design on cost recovery
rather than efficiency. Decreasing block rate
structures are most common in the Midwest.
Nominal marginal rates grew over the sample
horizon faster than inflation, but fixed fees in-
creased more slowly; so the relative propor-
tion of water charges attributed to the volume
of consumption increased from 1995 to 2005.

Aggregate delivery volumes (Daily Use)
were obtained from state records for 216 util-
ity systems over 25,833 observation-months.
The existence of historical volume data is rare
in the absence of a state-level reporting pro-
gram, so a bias is incurred against data in the
New England region, where perhaps water

availability is less of a concern and data col-
lection efforts appear weaker (based on our
contacts with data sources). No observations
from New England are included in the regres-
sions due to the missing volume data.
Monthly volume supplied per capita averages
6.0 thousand gallons (kGal), with Alaska av-
eraging only 4.0 kGal and Texas averaging
7.2 kGal. Winter average supply (December
and January) averages 5.0 kGal, whereas sum-
mer average supply (July and August) aver-
ages 7.8 kGal. Between 0.177 gallons
(Alaska) and 0.54 gallons (Texas) is supplied
per dollar earned, with a mean of 0.43 gallons
per dollar. The winter average is 0.354 gallons
per dollar earned, and the summer average is
0.549.

Population data are taken from the U.S.
Census, personal income (Income) and non-
farm income (Commerce) from the Bureau of
Economic Analysis, and inflation measures
(Consumer Price Index and Producer Price In-
dex) from the Bureau of Labor Statistics. The
climate measures, monthly highest and lowest
recorded temperatures (MinTemp and
MaxTemp) and the proportion of days when
less than 0.1 inches of precipitation was re-
corded (DryPart) are taken from the National
Climatic Data Center.

The Dependent Variable

The applicability of an EC regressor de-
rived from a distinct structural model depends
on the stationarity, or integration level, of the
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FIGURE 1
Testing for a Periodic Unit Root in Quantity Delivered

regressor itself and not, per se, on the coin-
tegration status of its components. The EC
technique applied to stationary series will be
equally consistent and confer many of the
same advantages as if applied to nonstationary
but cointegrated series. Similarly, periodic EC
applied to aperiodic series will produce con-
sistent, if redundant, estimates. Nevertheless,
the academic interest in cointegration is suf-
ficient to merit a preliminary examination of
the dependent variable, total daily quantity of
water demanded per capita.

A candidate test of periodic integration is
that proposed by Boswijk and Franses
(1995b). Periodic integration with a single
common root process (a common stochastic
trend) in periodic data is equivalent to aperi-
odic integration in the same data stacked as
an annual vector. A univariate autoregressive
equation on the stacked vector can be per-
formed functionally as an autoregression on
the pooled monthly data with monthly dum-
mies. A Dickey-Fuller-style test is performed
on the vector product of the estimated auto-
regressive parameters. Just as in the Dickey-
Fuller test, the null hypothesis is that the
estimated parameter (in this case the vector

product of estimated parameters) equals unity,
implying the existence of a unit root, thus that
the series is nonstationary. The alternative is
theoretically one-sided, although a few obser-
vations in practice produce an autoregressive
parameter greater than unity.

Boswijk and Franses suggest a likelihood
ratio test based on imposing the unity restric-
tion, but only the asymptotic distribution of
this test is known, and the time series samples
here are small. Therefore, a t-statistic on the
distance between the nonlinear combination
of estimated parameters and unity is presented
alongside an F-test on the imposed restriction,
with the understanding that results may be
more demonstrative than rigorous.

The quantity demanded panel is unbal-
anced by missing observations, so the periodic
unit-root hypothesis is tested separately for
each community rather than in a pooled test.
The t-test median over all communities is
0.005, with 78% of observations greater than
�1.30. The F-test median is 1.175, with 68%
of observations less than 2.70. The distribu-
tion of t-scores is displayed graphically in Fig-
ure 1. Although critical values for both tests
vary with the number of time observations in
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each panel, –1.30 is higher than the 95% criti-
cal value for any one-sided t-test, and 2.70 is
lower than the 90% critical value for F(1,120),
which is the most restrictive case among the
panels tested. Therefore, individual test statis-
tics fail to reject the null in over 70% of cases.
The hypothesis that all quantity data are pe-
riodically integrated of order one cannot be
rejected either. These results sound the alarm
that residuals generated from a linear regres-
sion on quantity demanded will generally not
be stationary in the absence of a periodic coin-
tegrating vector. Periodic cointegration is jus-
tified on this basis.

The Structural Model

The long-run structural model employed at
this stage is a Cobb-Douglas model. The
Cobb-Douglas functional form is still the
most popular (Basani, Isham, and Reilly
2008; Olmstead, Hanemann, and Stavins
2007; Musolesi and Nosvelli 2007). Other
common forms include the semilog (Kostas
and Chrysostomos 2006) and linear (Ruijs,
Zimmermann, and van den Berg 2008). The
Stone-Geary form also has its adherents (Gau-
din, Griffin, and Sickles 2001; Martinez-Es-
pineira and Nauges 2004).

Interpretation of the model parameters is
different in the context of an EC model than
it would be as a stand-alone regression. In ad-
dition to the usual explanations for nonzero
residuals, such as measurement error and ran-
dom innovation, disequilibrium due to slow
adjustment must also be included. In defer-
ence to the periodic integration results of the
previous subsection, one structural model per
calendar month will be estimated, not as a pre-
dictive model but to contribute long-run per-
spective to the dynamic model.

Covariates include weather and climate
measures, residential and commercial mar-
ginal price indices, sectoral intensity ratios,
and income. For each month, the weather
measures are average within-month daily
minimum temperature, average within-month
daily maximum temperature, and the propor-
tion of days in the month with less than 0.10
inches precipitation (MinTemp, MaxTemp,
and DryPart). The climate measures consist of
the 30-year averages of each weather mea-

sure, by month (AvMinTemp, AvMaxTemp,
and AvDryPart). Personal income is taken di-
rectly from the Bureau of Economic Analysis.
Income not only reflects the contemporaneous
budget constraint, it proxies the level of
capital expenditure, including water-using
durables. Unfortunately, the geographic
boundaries of the income aggregates do not
consistently correspond to the areas of munic-
ipal water service coverage. Also, mean per-
sonal income may be an insufficient statistic
when the distribution of income within com-
munities matters. Finally, personal income
data is annual rather than monthly.

Marginal prices (ResPrice and Comm-
Price) are adjusted for inflation and weighted
across residential and commercial price
schedules according to an assumed distribu-
tion (Bell and Griffin 2008a). Household con-
sumption and business consumption within a
given community are each assumed to be
distributed lognormally over quantities de-
manded. Total, mean, and median consump-
tion are sufficient statistics to describe a
lognormal distribution. Medians of consump-
tion for each observation are calculated so that
the ratio of mean to median is identical to the
ratio observed in the distribution of total con-
sumption across observations (which is 2.48).
The unique distributions so defined are
mapped onto each residential and commercial
rate schedule to produce a weighted marginal
price index. The same weighting is applied to
average prices in the formulation of the short-
run average price indices, although these are
summed discretely every 500 gallons from
500 to 100,000, whereas the marginal price
indices are integrated continuously. None of
the sample communities experiences a price
that is strictly zero.

In order to represent community differ-
ences in commercial activity, commercial and
industrial intensity ratios (CommIntensity and
IndIntensity) are included as covariates by di-
viding the monetized nonfarm and industrial
outputs, respectively, by population. Industry
is the subsector of commerce primarily con-
cerned with physically transformative pro-
cesses, which can in many cases demand high
levels of input water. Its inclusion is problem-
atic because its distinction from other forms
of commerce is arbitrary, water uses vary



87(3) Bell and Griffin: Water Demand with Error Correction 537

widely within the industrial sector, and an un-
known portion of the industrial sector obtains
water from wholesalers or is self-supplied.
The error associated with this measure should
therefore be considered underestimated by the
regression. Nevertheless, as one of the more
significant factors in the regression (Table 2),
its inclusion is cautiously justified. An indus-
trial price is not included because the combi-
nation of measurement error and collinearity
with the other price measures would eclipse
any reliable explanatory power.

Results of the structural regressions for
each calendar month are presented in Table 2.
The residuals of this regression, lagged one
year, will constitute the EC term of the dy-
namic regression in differences. A hypothesis
of this research is that seasonality at the
monthly frequency is a consideration in water
demand. If seasonality is evident, then the
monthly coefficients should be significantly
different from the coefficients of a pooled re-
gression of all months. To settle this question,
a Chow test is performed comparing each
monthly regression to the pooled regression
of the other 11 months. The appropriate sta-
tistic is F(12, 14,762), but for simplicity, re-
sults were compared to the 1% critical value
of F(12, �), which is 2.185. The hypothesis
that all monthly parameters are indistinguish-
able from all pooled parameters is rejected for
every month except April (1.920) and October
(0.820), which is expected since a pooled av-
erage, like a broken clock, should still be right
twice per cycle. These results indicate the un-
likelihood of a constant demand relationship,
and they support the probability of 12-phase
(monthly) seasonality, but they do not pre-
clude the possibility of other intra-annual
(such as 4-phase) or extra-annual (such as El
Niño) cyclic frequencies.

A cursory examination of Table 2 reveals
that residential price and industrial intensity
are the most consistently significant covari-
ates. The price signal is generally stronger in
the warmer summer months. Residential de-
mand seems to be more sensitive to season-
ality than commercial demand. Although the
residential and commercial mean price elas-
ticities of �0.147 and �0.124 are low (in
absolute value), their combined mean of
�0.272 is consistent with previous research

(Dalhuisen et al. 2003). Evidence supporting
the hypothesis that water-consuming sectors
should be treated separately can be drawn
from the sectoral intensity variables and by
comparing the effects of the two price indices.
Although industrial intensity appears to figure
significantly in all months, commercial inten-
sity is significantly positive only in July and
August. The residential and commercial price
variables (whose pairwise correlation is
0.831) exhibit effects that appear to be gen-
erally similar and that are in fact statistically
indistinguishable in every period. The null hy-
pothesis that residential and commercial con-
sumption can be adequately described in a
single-sector model cannot be rejected, al-
though the evidence supports identification of
a separate industrial sector.

Personal income enters negatively, which
is an unexpected result. The negative income
effect could be essentially spurious, resulting
from the disappointingly high level of income
aggregation, or it could reveal a higher stock
of political capital in more affluent commu-
nities. It is possible that such communities
could exert a monopsonistic influence on
price and quantity supplied; however, the lack
of corroborating evidence from prior literature
casts doubt on this explanation. Average max-
imum temperature and average minimum
temperature coefficients frequently carry op-
posite signs, indicating that temperature
spread is an important determinant of water
demand.

The distribution of t-statistics testing the
null hypothesis of periodic integration in the
residuals is illustrated by Figure 2. The me-
dian t-score is �26.53, with 85% of test sta-
tistics lying outside the 95% (one-sided)
probability interval of the null, allowing a
handy rejection of the hypothesis that the re-
siduals are systematically periodically inte-
grated. The median F-test statistic is 468.0;
83.4% of statistics lie outside the 90% inter-
val. With some caution, it may be said that the
left- and right-hand sides of each structural
relation are periodically cointegrated. Al-
though the regressions summarized in Table 2
are consistent periodic cointegration vectors,
they should not be taken as indicative of ob-
served water demand behavior because they
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TABLE 2
Results of Cobb-Douglas Regression by Month

Variable Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

MinTemp �0.222
(0.093)

�0.032
(0.105)

�0.223
(0.214)

0.129
(0.281)

�0.554
(0.389)

�0.14
(0.593)

�0.881
(0.597)

0.145
(0.6)

�0.638
(0.499)

�0.478
(0.294)

�0.208
(0.212)

0.009
(0.074)

MaxTemp 0.324
(0.236)

�0.136
(0.232)

�0.01
(0.327)

0.691
(0.445)

2.156*
(0.44)

1.553
(0.598)

1.866*
(0.615)

1.522
(0.62)

1.983*
(0.622)

0.578
(0.419)

0.268
(0.266)

�0.306
(0.239)

DryPart 0.054
(0.05)

�0.001
(0.02)

0.135
(0.121)

0.038
(0.059)

0.045
(0.042)

0.137
(0.069)

0.474*
(0.09)

0.298*
(0.086)

0.187
(0.077)

0.07
(0.086)

�0.024
(0.064)

0.339*
(0.111)

AvMinTemp 0.312*
(0.092)

�0.042
(0.149)

�0.43
(0.272)

�1.061*
(0.321)

�0.539
(0.413)

�0.621
(0.639)

0.484
(0.651)

�0.574
(0.646)

�0.095
(0.586)

�0.537
(0.35)

�0.446
(0.266)

�0.556*
(0.173)

AvMaxTemp �0.45
(0.253)

0.347
(0.278)

1.121*
(0.399)

1.197
(0.503)

0.383
(0.516)

1.432
(0.666)

1.339
(0.652)

1.567
(0.681)

0.649
(0.738)

1.518*
(0.515)

0.87
(0.353)

1.254*
(0.327)

AvDryPart �0.143*
(0.053)

�0.13
(0.057)

�0.07
(0.051)

0.003
(0.037)

�0.049*
(0.018)

�0.091*
(0.018)

�0.068*
(0.016)

�0.081*
(0.018)

�0.099*
(0.027)

�0.059
(0.031)

0.006
(0.043)

0.224*
(0.059)

ResPrice �0.123*
(0.042)

�0.112*
(0.042)

�0.121*
(0.041)

�0.151*
(0.042)

�0.164*
(0.042)

�0.155*
(0.052)

�0.175*
(0.049)

�0.178*
(0.05)

�0.191*
(0.057)

�0.196*
(0.044)

�0.142*
(0.039)

�0.061
(0.04)

CommPrice �0.084
(0.052)

�0.089
(0.051)

�0.105
(0.048)

�0.114
(0.047)

�0.138*
(0.047)

�0.139
(0.085)

�0.141
(0.056)

�0.136
(0.056)

�0.14
(0.063)

�0.112
(0.05)

�0.123*
(0.045)

�0.171*
(0.05)

CommIntensity 0.065
(0.068)

0.006
(0.068)

�0.03
(0.069)

0.059
(0.07)

0.172
(0.07)

0.152
(0.087)

0.236*
(0.085)

0.277*
(0.085)

0.185
(0.095)

0.157
(0.078)

0.118
(0.067)

0.137
(0.068)

IndIntensity 0.11*
(0.014)

0.106*
(0.014)

0.118*
(0.014)

0.103*
(0.014)

0.118*
(0.014)

0.115*
(0.017)

0.118*
(0.017)

0.116*
(0.017)

0.099*
(0.019)

0.104*
(0.015)

0.099*
(0.013)

0.103*
(0.014)

Income �0.31*
(0.094)

�0.254*
(0.094)

�0.153
(0.096)

�0.142
(0.097)

�0.222
(0.095)

�0.116
(0.12)

�0.141
(0.118)

�0.159
(0.118)

�0.089
(0.13)

�0.145
(0.107)

�0.276*
(0.093)

�0.33*
(0.093)

Constant 7.867*
(0.879)

6.704*
(0.939)

4.374*
(0.972)

2.02*
(1.076)

0.29
(1.174)

�4.173
(1.609)

�6.58*
(1.619)

�5.899*
(1.548)

�3.012
(1.585)

1.158
(1.142)

5.33*
(0.888)

6.645*
(0.904)

Obs. 1,207 1,213 1,215 1,226 1,229 1,224 1,223 1,236 1,245 1,256 1,261 1,251

Note: Standard errors in parentheses.
* p�0.01.
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FIGURE 2
Testing for a Periodically Integrated Residual

omit important short-run components to be
addressed in the dynamic model.

The Dynamic Model

The short-run model is a logarithmic model
in annual first differences, augmented with
pairwise products of covariates. The depen-
dent variable, , is the annual log differ-� ln w
ence in daily consumption per capita:

I

� ln w � � � ln p � � � ln xp � i i
i �2

I I I �ij
� � �( ln p ln x )� �( ln x ln x ) [7]� pi i � � i j

i �2 i �2 j �2 2

� �EC � �.

Prices, p, are annotated separately from the
other covariates, x, for clarity only. Except for
the error correction term, EC, the model is
taken from Bell and Griffin (2008a). In con-
trast to the earlier application, both residential
and commercial prices are included in the
present model. A product of the two prices is
not included because its inclusion would ob-
scure the price elasticity calculations. Also,

the price metric here is average quasi-differ-
ence price rather than marginal quasi-differ-
ence price. The quasi-difference price is the
difference between two price schedules,
weighted by the distribution of lagged con-
sumption. By weighting contemporaneous
and lagged price schedules identically, the
spurious endogeneity of a quantity-dependent
price index is avoided. Only residential and
commercial prices, weather realizations, and
the EC term are included in this short-run re-
gression since climate, income, and sectoral
intensity are assumed to change too slowly to
drive an annual model.

Estimation results are presented in Table 3.
The last year of data is withheld from the es-
timation to test prediction accuracy. The EC
term is highly significant, the most significant
coefficient in fact, indicating that the pull to
equilibrium is a motive force affecting quan-
tity demanded at the annual level. Not only is
the coefficient (�0.187) different from zero,
it is different from �1, implying a multiyear
adjustment path. It is noteworthy that the EC
coefficient could reflect behavior other than
consumption, such as mitigation of system
losses by utilities.
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TABLE 3
Results of Logarithmic Dynamic Regression

Variable Coefficient Std. Error t-Score

ResPrice �0.00194 0.0304 �0.06
CommPrice 0.00471 0.0140 0.34
MinTemp �0.579* 0.0789 �7.34
MaxTemp �0.110 0.144 �0.76
DryPart �0.350 0.240 �1.46
ResPrice� MinTemp �0.0500* 0.00682 �7.28
ResPrice� MaxTemp 0.0480* 0.00637 7.54
ResPrice� DryPart 0.000375 0.00203 0.18
CommPrice�MinTemp 0.00703* 0.00137 5.13
CommPrice�MaxTemp �0.00733* 0.00137 �5.35
CommPrice�DryPart 0.0000355 0.000594 0.06
MinTemp�MaxTemp 0.174* 0.0281 6.20
MinTemp�DryPart 0.0753 0.0736 1.02
MaxTemp�DryPart 0.0184 0.110 0.17
EC �0.187* 0.00519 �35.99

Note: n�12,547. EC, error correction.
* p�0.01.

Price covariates are significant only when
paired with weather covariates (such as
ResPrice*MinTemp), indicating the effect of
the weather on price response. The frequency
of absent precipitation (DryPart) does not ap-
pear to be as important in the short run as
temperature. Mean high and low temperatures
appear to be the motive force behind demand
in the short run, not only in themselves but
also in governing the effect of price.

Short-run elasticity is composed of two ele-
ments for each sector, the immediate response
to a price shock and the momentum of ad-
justment to previous shocks. The shock re-
sponse is computed with respect to the
estimated parameters corresponding to that
sector’s price index according to the formula

I

ε� � � � ln x . [8]p � pi i
i �2

The adjustment elasticity, embedded in the
EC component, can be understood as the pro-
portion of long-run elasticity distributed to
each period. Adjustment elasticities are prod-
ucts of the long-run price coefficients reported
in Table 2 and the EC coefficient reported in
Table 3.

Table 4 shows estimated short-run price
elasticities derived by the dynamic model,
grouped by month. The theoretical annual
elasticity of demand due to a simultaneous

price change in both residential and commer-
cial schedules (Annual) is decomposed into
sectors, with each sectoral elasticity further
separated into contemporaneous (Beta) and
lagged (EC) components. The contempora-
neous components are slightly positive and
generally smaller than the lagged compo-
nents, contributing little or no price effect.
From the EC coefficient reported in Table 3,
each of the annual disequilibrium elasticity
estimates is approximately 18.7% of the total
estimated structural elasticity. None of the
short-run elasticity means is statistically neg-
ative, owing primarily to variation in the data.
It appears that communities take a minimum
of one year to notice a price change and begin
to react only in the second year.

The dynamic EC model is used to project
each 2004 observation one annual step for-
ward. The results reported in Table 5 include
predicted mean daily consumption per capita,
mean absolute percent error (MAPE), and
mean squared error (MSE) of the preferred
model (EC), compared to the observed 2005
data mean and two benchmarks. The bench-
marks include predictions from the monthly
structural models and from the dynamic
model reestimated without an EC term. The
EC model (as well as the non-EC dynamic
model) clearly outperforms the structural
models on all measures, illustrating the im-
portance of temporal consideration in model-
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TABLE 4
Annual Average Price Elasticity by Month and Sector

Residential Commercial

Obs. Beta EC Total Beta EC Total Annual

Jan 1,227 0.016 �0.023 �0.007 0.000 �0.016 �0.016 �0.023
Feb 1,226 0.013 �0.021 �0.007 0.000 �0.017 �0.016 �0.024
Mar 1,228 0.011 �0.023 �0.012 0.001 �0.020 �0.019 �0.031
Apr 1,239 0.009 �0.028 �0.020 0.001 �0.021 �0.020 �0.040
May 1,242 0.006 �0.031 �0.025 0.001 �0.026 �0.025 �0.050
Jun 1,238 0.004 �0.029 �0.025 0.001 �0.026 �0.025 �0.050
Jul 1,237 0.004 �0.033 �0.029 0.001 �0.026 �0.025 �0.054
Aug 1,250 0.004 �0.033 �0.029 0.001 �0.025 �0.024 �0.053
Sep 1,259 0.005 �0.036 �0.030 0.001 �0.026 �0.025 �0.055
Oct 1,271 0.007 �0.037 �0.029 0.001 �0.021 �0.020 �0.049
Nov 1,275 0.009 �0.027 �0.017 0.001 �0.023 �0.022 �0.040
Dec 1,265 0.014 �0.011 0.003 0.000 �0.032 �0.032 �0.029

TABLE 5
Comparison of Model Predictions

Model Observed EC Structural Dynamic

Mean (gal) 209.9 182.8 163.7 193.8
MAPE — 21.6 41.0 21.7

MSE — 14,436 26,158 21,998

Note: n � 1,612. EC, error correction; MAPE, mean absolute
percent error; MSE, mean squared error.

ing water demand. The EC model only
marginally outperforms the non-EC dynamic
model. Inclusion of the EC term is arguably
recommended on the grounds of avoiding
theoretical misspecification rather than on
predictive grounds.

IV. CONCLUSIONS

An atypically broad panel of monthly de-
mand data for publicly supplied water in
American urban centers is analyzed using a
periodic EC model. Although the model can
be applied to household data as well as com-
munity data, the independent variables used
in the analysis mitigate the relative weakness
of aggregate data. A microlevel approach can
be pursued by more conventional means when
such data are available.

The EC model allows examination of the
time path of demand by integrating shorter
and longer perspectives in a single estimation
model. The estimated effect of the lagged re-
sidual implies that demand adjustments are

not instantaneous or even as quick as a single
year. The model significance and predictive
power of the dynamic model in annual differ-
ences allows a rejection of the possibility that
a purely structural model is well specified for
time-dependent applications. Estimation of
distinct structural relations for each calendar
month allows a test of seasonality of demand.
Rejection of the null hypothesis that structural
parameters are equivalent across months sug-
gests that ignoring seasonality can lead to
misspecification, even when weather and cli-
matic factors are taken into account. Inclusion
of both residential and commercial price in-
dices, as well as commercial and industrial in-
tensity ratios, tests the adequacy of the more
common single-sector model. Although some
evidence suggests that businesses, especially
industrial businesses, demand water differ-
ently than households, the single-sector model
is not conclusively rejected.

Some new possibilities are suggested by
the results. Ignoring the distinction between
the sectors may be unwise. Social costs aris-
ing from temporary misalignment of supply
and demand may be reduced by adjusting resi-
dential rates and commercial rates differen-
tially to the same target price. Many rate
setters change the entire rate schedule uni-
formly, either for convenience or out of an
interest in intersectoral equity. Recognizing
that tensions exist inherently among compet-
ing objectives is a necessary step to striking
good balances. For example, the dictum of ef-
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ficiency requires that all sectors face natural
water’s opportunity costs, and these should be
locally equivalent across sectors. Thus, effi-
ciency is best advanced by equal rates except
where marginal processing costs differ
sectorally.

Demand factors appear to be seasonal in a
way that is not entirely captured by climatic
conditions. This finding speaks to the use of
seasonal management policies, especially if a
risk of acutely exceeding peak capacity is
present. Short-run demand response may be
only marginally significant in summer
months, but it is very close to zero in nonsum-
mer months. Also, annual elasticity appears to
be much lower than structural elasticity, in-
dicating a very slow adjustment process.
Managers cannot expect an immediate read-
justment to changing conditions. Applying
these findings may require a deeper consid-
eration of the habits and durable possessions
of water users, which are both seasonal and
slow to evolve. Because of the dim perception
consumers have of marginal water cost, in-
formation must also be counted as a valuable
capital good.

The periodic EC model produces near-term
forecasts with an appealingly low level of er-
ror (21.6% MAPE), even though it may not
be the best model for projecting future con-
ditions or for testing hypotheses regarding
price elasticity. The model and the exercise of
developing the model underscore the inade-
quacy of the term “price elasticity.” Many
elasticities have been generated in this re-
search alone, varying with time horizon,
season, sector, and model. Meaningful com-
parison and application of these estimates de-
pends on an explicit characterization of which
elasticity is to be derived.

Community water consumption series
could contain a seasonal stochastic trend, as
the series in this sample apparently do. If this
is the case, ordinary least squares estimates of
demand cannot be assumed consistent. For-
tunately, the data of the present sample are
seasonally cointegrated. Unit root tests are
available to assist in the determination of
trend stationarity, as are seasonal and periodic
integration tests to determine cyclical pat-
terns. When demand relations tend to equili-
brate slowly, an integrated structural/dynamic

model such as an EC model will provide im-
provements in both forecasting and insight
over either a static or a dynamic model alone.
Finally, as the accuracy of these findings is
limited by the quality of the available data, it
will be interesting to see if similar findings
persist as data recording becomes more wide-
spread, more uniform, and more precise.
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