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ABSTRACT. To specify demand in most water 
allocation problems, researchers face a tradeoff 
between flexibility and parsimony. Flexible forms 
are less constraining on elasticity estimates, but 
require large parameter sets that tend to cause 
poor out-of-sample forecasts and computational 
difficulties. Using a five-year panel of Texas mu- 
nicipalities, the parsimonious Stone-Geary form 
yields estimated demand functions that are com- 
parable to flexible form results. The Stone-Geary 
specification also provides an estimate of the por- 
tion of water use that may not be responsive to 
price, and is useful in analysing price structures 
and designing conservation policies. (JEL Q25, 
C23) 

I. INTRODUCTION 

Most applications of water demand em- 
phasize the need for accurate and uncon- 
strained price elasticity estimates as well as 
parsimony in parameters. The combination 
of these two features is particularly important 
in dynamic simulation models of water plan- 
ning and management where water demand 
estimates are used to evaluate the welfare im- 
plications of different water allocations over 
time. Whether it is to evaluate water supply 
enhancement projects, water conservation 
measures, rate changes, or the conjunctive 
use of ground and surface water, dynamics 
are involved and the choice of a functional 
form is paramount. The need for dynamic 
water management models has become more 
pronounced, especially for the development 
of municipal water plans. For example, in 
Texas, the focus of our empirical analysis, 
rapid urban growth in the last thirty years has 
caused large transfers of water from agricul- 
ture to municipalities, and the trend is ex- 
pected to continue in the future.' Many mu- 
nicipalities are depleting their ground water 

reserves, causing increased pumping costs 
for all future periods, land subsidence, and 
quality degradation. At the same time, sur- 
face water is becoming scarce and cities must 
decide whether to use ground water, surface 
water, or both (Hultberg 1999). Similar prob- 
lems are commonly found elsewhere and it 
has become clear that the sustainability of 
economic development in many cities de- 
pends largely on improved long-run planning 
and management of scarce resources such as 
water. 

Water demand estimation involves a 
tradeoff between achieving parsimony and 
global regularity of the preference structure 
on the one hand, and flexibility on the other.2 
Most of the earlier studies in water demand 
have chosen simplicity, using linear and/or 
log-linear specifications.3 The resulting re- 
strictions on elasticities are not problematic 
as long as price variation is small and predic- 
tions are made within a similar price range. 
Because there is evidence that price elasticity 
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'The Texas Water Development Board estimates 
that in the year 2040, municipalities will be the main 
consumers of water in Texas (TWDB 1990). 

2 Flexibility usually refers to the ability of a func- 
tional form to approximate a twice continuously differ- 
entiable function to the second order. The number of 
free parameters required for this purpose can be large. 
In particular, if the number of exogenous variables is 
N, a flexible consumer demand function requires (N2 + 
3N - 4)/2 free parameters (Diewert and Wales 1988). 

3 A summary of these studies up to 1979 is given 
by Danielson (1979). Later studies include Cochran and 
Cotton (1985) and Hansen (1996). 
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is neither constant nor increasing with the 
price level, we need a functional form that 
allows elasticity to decrease with price.4 Ex- 
cept for cases where different regressions are 
performed on subsamples of the data,5 non- 
constant elasticity results have been obtained 
using flexible functional forms, but flexible 
forms are not well suited for specification of 
benefits in dynamic programming simula- 
tions for reasons explained below. 

Although flexibility often provides good 
sample fits, out-of-sample forecasts suffer if 
the values of variables trend away from 
within-sample values. Global curvature re- 
strictions can be imposed on these flexible 
forms but, unless flexibility is greatly re- 
stricted, the number of parameters needed is 
still large (Diewert and Wales 1987). Some 
methods address the concavity problem by 
only imposing restrictions locally "over a set 
of prices where inference will be drawn" 
(Terrell 1996), but this does not solve the 
out-of-sample problem. 

Hausman and Newey (1995) use nonpara- 
metric methods to estimate exact consumer 
surplus. Dynamic optimization models usu- 
ally employ consumer surplus, but the con- 
sumer surplus must be expressed as a func- 
tion of control variables that change over 
time. A nonparametric estimation with nu- 
merical approximation of a demand function 
cannot be used for this purpose. The main 
problem is one of parameter parsimony. 
None of these functions are parsimonious 
enough to be used in dynamic simulations 
where the full form of the demand function 
is required. 

In addition, in most flexible form estima- 
tions, parameter estimates are functional ap- 
proximations and often do not have any 
straightforward economic interpretation. To 
get better insights on results of dynamic opti- 
mization models and their sensitivity to pa- 
rameterization, it can be important to be able 
to interpret the demand parameters with ref- 
erence to an underlying structural model. 

The present paper suggests and estimates 
a functional form that is simple, interpret- 
able, and generates nonconstant price elastic- 
ities. We propose the use of a Stone-Geary 
demand function and compare its perfor- 
mance to a flexible functional form, previ- 

ously used in water demand estimation, the 
Generalized Cobb-Douglas (GCD).6 The 
comparison is based on the estimation of wa- 
ter demand using five years of monthly data 
from a large number of Texas communities. 
We find that the elasticities obtained for the 
Stone-Geary have seasonality patterns simi- 
lar to the estimates obtained for the GCD, as 
long as Stone-Geary parameters are allowed 
to be linear functions of the exogenous vari- 
ables used in the GCD regressions. Also, the 
estimated function does not break down at 
high levels of prices and provides insight into 
the determinants of threshold effects on wa- 
ter use. 

The paper is organized as follows: Section 
2 contains a brief description of the data, 
variables, and functional forms. Improve- 
ments provided by a random effect estima- 
tion of the GCD functional form are pre- 
sented in Section 3. In Section 4, results of 
the Stone-Geary estimations are reported and 
compared to the GCD results and some cave- 
ats in parameter interpretation are discussed. 

II. EXPLANATORY VARIABLES, 
DATA, AND FUNCTIONAL FORMS 

Variables and Data 

The data set provides information for 221 
Texas communities during the period 1981- 
1985.7 Summary statistics for all variables 
are given in Table 1. Out of 12,050 observa- 

4 Foster and Beattie (1979) obtain nonconstant price 
elasticities using a price exponential model. Griffin and 
Chang (1990 and 1991) compare linear, log linear, Gen- 
eralized Cobb-Douglas, Translog, and Fourier func- 
tional forms. They find price elasticities that increase 
with price when a flexible form is used. 

5 For example Dandy et al. (1997) use winter evapo- 
ration for the "winter model" and summer moisture for 
the "summer model" to obtain different winter and 
summer price elasticities. 

6 In their comparison of several demand specifica- 
tions, Griffin and Chang (1991) find that the General- 
ized Cobb-Douglas form (GCD) provides flexibility in 
the parameters while preserving a relatively nicely be- 
haved demand function. 

7 The data set was developed by Ron Griffin and 
Chan Chang. A more detailed description of the data as 
well as thorough justification for data manipulation and 
choice of variables can be obtained from Griffin and 
Chang (1989, 1990, 1991). 
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TABLE 1 
SUMMARY STATISTICS, SAMPLES OF 12,050 AND 9,430 OBSERVATIONS 

Variable Description Frequency Units 

Q Quantity of water produced Monthly Gallons/capita/day 
AP Average Price Monthly US$/1000 gallon 
I Income (1980 Census) Time invariant 1000 US dollars/capita/year 
SP Spanish Population (1980 Census) Time invariant Percent of population 
C Days with rainfall <.25 in x Avg. temp. Monthly Degrees F. X days 
AAP 60-year average annual precipitation Time invariant Inches/year 

Full Sample (years not identified) Reduced Samples (years identified) 

N Mean St. Dev. Min Max N Mean St. Dev. Min Max 

All 12,050 9,430 
Q 1.69 67.8 21.0 731 168 67.2 21.0 731 
AP 1.72 0.70 0.17 6.21 1.75 0.73 0.17 6.21 
I 6.40 1.68 2.30 14.5 6.50 1.69 2.30 14.5 
SP 6.07 6.47 0.00 35.3 5.83 6.33 0.00 35.3 
C 1801 418 644 2764 1790 412 680 2757 
AAP 32.5 10.8 7.82 59.2 32.9 10.7 7.82 54.5 

January 997 750 
Q 138 41.6 35.6 387 136 41.0 35.6 387 
AP 1.78 0.69 0.32 6.21 1.84 0.73 0.59 6.21 
I 6.39 1.67 2.30 14.5 6.49 1.62 2.30 14.5 
SP 6.06 6.41 0.00 35.3 5.63 5.83 0.00 23.3 
C 1287 174 871 1941 1286 161 871 1941 
AAP 32.5 10.8 7.82 59.2 33.1 10.5 7.82 54.5 

July 969 715 
Q 228 84.7 34.2 548 227 86.9 59.2 548 
AP 1.56 0.67 0.19 5.14 1.58 0.71 0.19 5.14 
I 6.44 1.69 2.30 14.5 6.64 1.76 2.93 14.5 
SP 6.04 6.51 0.00 35.3 5.69 6.33 0.00 35.3 
C 2359 177 1632 2764 2355 181 1632 2694 
AAP 32.6 10.9 7.82 59.2 33.1 10.9 7.82 54.5 

tions in the original sample, 2,620 are 
dropped to identify years and use the data set 
as a panel. Table 1 also gives summary statis- 
tics for the resulting 9,340 observations (186 
communities).8 

We use five variables that have been 
shown to have a significant effect on per cap- 
ita water consumption (Q) across different 
functional forms. These five variables are the 
average price of water (AP), per capita in- 
come (I), percentage of the population of 
Spanish origin (SP), a climate variable (C), 
and average annual precipitation (AAP).9 

AP was statistically shown to be the price 
variable on which individual decisions on 
water consumption are made, as opposed to 
the marginal price or a Taylor-Nordin speci- 
fication for multipart tariff structures (Griffin 

and Chang 1990). Although economic theory 
without transaction costs suggests that con- 

8 Years could only be identified when the full 5 
years of a given month were reported. Consequently, 
the municipalities dropped were those with the most ir- 
regular reporting. The new sample is more homoge- 
neous and is less likely to contain measurement errors. 
The most noticeable difference between the two sam- 
ples is the drop in percentage of population of Spanish 
origin (see Table 1). 

9 Foster and Beattie (1979) justify the exclusion of 
other goods in the estimation arguing that water has no 
direct substitutes and is a complement only with durable 
items such as appliances, the price of which does not 
affect water consumption once they have been pur- 
chased. Cross price effects are therefore normally as- 
sumed negligible in water demand. We will discuss the 
implications of this restriction in the context of inter- 
preting the "threshold water use" parameter obtained 
from the Stone-Geary estimation. 
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sumer behavior is guided by marginal prices, 
in a world where the costs of obtaining spe- 
cific information on complicated rate struc- 
tures is high relative to the cost of water, it 
is likely that consumers will react to a trans- 
parent average price (Foster and Beattie 
1981).1o 

The inclusion of SP as explanatory vari- 
able is based on a 1986 statistical study per- 
formed by demographers (Murdock et al. 
1988) where Spanish origin was found to 
have a significant negative impact on per 
capita water use. It has not been tested 
whether this might be due to the larger aver- 
age family size of Hispanics (thus spreading 
outdoor and other "common" household 
water uses over more people), different cul- 
tural norms regarding the use of water- 
consuming durables (e.g. pools, lawns, ap- 
pliances), or some other factors. 

Variables' specifications are as follows. 
Q is measured in gallons per capita per 
day. Water production per day is obtained 
from the Texas Water Development Board 
(TWDB).11 The data generally excludes in- 
dustrial and heavy commercial use so munic- 
ipal water use can be considered mostly resi- 
dential.12 1980 Census data on population is 
used to calculate per capita use. 

AP is calculated as the average house- 
hold's water and sewer bill divided by the 
average household's water use. The climate 
variable C is constructed using the number of 
days without significant rainfall in the com- 
munity (-0.25 inches) multiplied by the 
month's average temperature in degrees 
Fahrenheit. This information was obtained 
from daily National Weather Service data. C 
is intended to capture the sensitivity of out- 
door water demand to climate variations. I, 
in thousand dollars per capita, and SP are ob- 
tained from the 1980 census. AAP is average 
annual precipitation in inches from 1951 to 
1980, obtained from the National Oceanic 
and Atmospheric Administration. Q, AP, and 
C are time variant, whereas I, SP, and AAP 
vary only cross-sectionally. 

Figure 1 shows the distribution of the 
price variable in the sample of 9,430 obser- 
vations. The bulk of the data is within the $1 
to $3 price range, with a mean price of $1.75. 
Applications of estimated flexible form de- 

mand functions should be particularly mind- 
ful of this range. 

Functional Forms 

The Generalized Cobb-Douglas (GCD) 
demand function. The GCD specification 
contains features similar to a double logarith- 
mic model in that the demand function is 
asymptotic to the price axis, has a positive 
quantity intercept and does not assume con- 
stant elasticity. The GCD form was origi- 
nally proposed by Diewert (1973).13 Its loga- 
rithmic transformation is 

In Q = 
8o 

+ 
sln(x 

+ 
6Sinx,, 

10 An economic theory endogenizing transaction 
costs would recognize the high household cost of de- 
termining MP relative to AP. AP can be identified from 
typical water bills, whereas MP requires knowledge of 
the typical rate structure. As Foster and Beattie point 
out in their 1981 paper, at low water values, households 
will not be motivated to spend the resources needed to 
determine MP. We concur with the Foster and Beattie 
position that the choice of a price variable for water is 
properly a matter of explanatory ability. It must be 
noted, however, that as water becomes more scarce, the 
empirical superiority of AP might not persist. " This feature is a weakness specific to water de- 
mand estimation. Two problems arise. First, the pres- 
ence of storage tanks allows for monthly variations in 
production that may not reflect monthly variation in 
consumption. Some of the data had to be discarded be- 
cause of high variation that canceled out in the next 
month. Second, losses to the system are included. These 
losses constitute 15 to 20 percent of water supply in 
Texas municipalities (TWDB 1990, 2-8). 

12 It must be noted that the burden is on communities 
to report this properly and we cannot be confident about 
their care. However, because larger water users have 
larger diameter service and meters (which are accompa- 
nied by higher monthly flat fees), it is relatively easy for 
communities to report industrial water use separately as 
requested by the TWDB. 

13 The GCD form has been more commonly used in 
production analysis. See for example Guilkey, Lovell, 
and Sickles (1983) for a comparison of the performance 
of different functional forms for cost estimation. They 
use an extended version of the GCD form (EGCD) 
which does not restrict the coefficients on cross prod- 
ucts to equal 1/2. They find that in almost every com- 
parison they conducted, the Translog (TL) systems esti- 
mator and the EGCD estimator outperform all other 
estimators, typically by a wide margin. However, each 
of these flexible forms always performs better when the 
production function exhibits some features of the under- 
lying restricted form. 
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FIGURE 1 
FREQUENCY DISTRIBUTION OF THE AVERAGE PRICE VARIABLE 

where xi, xj are the exogenous explanatory 
variables (in our estimation, AP, I, SP, C, and 
AAP) and where 6ij = 6ji for all i, j. 

The GCD form is able to provide noncon- 
stant elasticity estimates over the sample.14 
However, the number of parameters involved 
in the functional form is large'5 and raw pa- 
rameters are not readily interpretable. This 
complexity limits the use of estimation re- 
sults to applications requiring only elasticity 
estimates. 

The Stone-Geary demand function. Be- 
cause most structural dynamic models re- 
quire more than just elasticity estimates, we 
look for a functional form that involves 
fewer parameters but still allows price elas- 
ticity to vary seasonally and with the levels 
of price, income, and quantity variables. The 
Stone-Geary form is interesting in these re- 
spects.16 The function has been commonly 
used for food products, durable goods, and in 
the study of grants-in-aid, but it has not been 
investigated in the water demand literature. 

The main advantage of the Stone-Geary 
specification is its use of only two parameters 
while allowing for nonconstant elasticities 

14 Elasticities are calculated as, (alnQ/ax,)x, so the 
elasticity of Q with respect to the variable x, is 

5,+ 
4 

X, xi + x, 

5 The form uses K + K!/(K - 2)!2 parameters, 
where K is the number of exogenous variables. In our 
estimation where five explanatory variables are used, 
the number of parameter excluding the intercept is 15. 

'6 For a clear description of the theoretical features 
of the Stone-Geary demand function, see Deaton and 
Muellbauer (1980a), Powell (1974), and/or Chung 
(1994). Stone-Geary demand and its linear expenditure 
system have been widely used in the study of private 
consumption patterns starting with the extensive study 
of British consumption data by Stone (1954). The sys- 
tem seems well suited for analyzing the demand for 
food products (Deaton and Muellbauer 1980b). It has 
also been used in the study of public sector consump- 
tion patterns (McGuire 1979; Johnson 1979). 
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that may increase with price. Another nice 
feature is that both parameters have eco- 
nomic meaning. One of the parameters can 
be interpreted as a threshold below which 
water consumption is not affected by prices, 
at least not in the short run. The magnitude of 
this parameter is potentially informative for 
investment and pricing decisions of water 
utilities in growing communities. 

The Stone-Geary demand function can be 
derived from a utility function of the form: 
In U = 

In=l4i In(q/ 
- y,) with Ii pi = 1. The 

function assumes that utilities are additive 
but does not require homotheticity. Two pa- 
rameters with straightforward economic in- 
terpretation highlight the function: the "mar- 
ginal budget share" (P) and the "subsistence 
level" (y). The consumer is faced with a 
given level of income and a set of prices. The 
consumer first purchases a minimum accept- 
able level of each good (the 

yi's). 
The left- 

over income, also called "supernumerary in- 
come," is then allocated in fixed proportions 
to each good according to their respective 
preference parameter (the Pi's). 

Because we are only interested in water 
consumption, we can look at a utility func- 
tion where the consumer derives utility from 
water and some aggregate of all other goods 
used as the numeraire. Such a utility function 
generates the following demand function: 

I* - 
Pwyw 

- Y 
Qw = Yw + P 

Pw 

where the subscripts w and z indicate respec- 
tively parameters pertaining to water and to 
all other goods. We use I* for income and P 
for price in this specification to distinguish 
them from I and AP used in the GCD speci- 
fication. Some minor transformations of the 
variables have to be made so that the mea- 
surement of price and income corresponds to 
the units used for Q (per capita and per 
day).'17 

Price elasticity is given by -P (I* - 
yz) (P,Q,). The Stone-Geary function only 

allows for inelastic demand. This feature is 
not a problem for water given overwhelming 
support for low price elasticity in the litera- 
ture.'8 Another feature of this price elasticity 
is that it is not constrained to increase with 

price, which distinguishes it from the linear 
form and makes it more appropriate for ex- 
pected long-run elasticity changes. Income 
elasticity is PI*/I(P,Q,). This result implies 
that only normal goods can be analyzed with 
the Stone-Geary functional form. Water fits 
into this category. 

Following McGuire (1979), we choose to 
abstract from y, the general subsistence 
level, and treat I* as the supernumerary in- 
come. This simplifies the function, leaving 
only two parameters P and y, both pertaining 
directly to water demand. This simpler speci- 
fication is preferred because y, provides no 
information relevant to the study. The re- 
maining y parameter is renamed as the condi- 
tional water use threshold. Indeed, the term 
"subsistence level" is misleading for water 
demand analysis. The y parameter does not 
indicate how much water is needed to sur- 
vive, but the amount of water that may not 
be responsive to prices. The term conditional 
emphasizes that this threshold is dependent 
on the available technology, the state of own- 
ership, the pricing structure, and the price of 
water-consuming durable goods during the 
time period of the estimation. In the follow- 
ing we simply use the word threshold to refer 
to y. 

The parameters y and P vary with the ex- 
ogenous variables. y is assumed to be a linear 
function of exogenous variables that have 
been shown to be of significance in water de- 
mand but are not directly included in the 
Stone-Geary formulation. These are the cli- 
mate variable (C), the Spanish population 
variable (SP), and the average precipitation 
variable (AAP). Common sense indicates that 
the threshold should be sensitive to these 
variables. The impact of climate variables is 
intuitive. The impact of the SP variable could 
come from the fact that the variable may cap- 
ture family size or cultural differences. The 
marginal budget share may also be sensitive 
to some exogenous variables, and there is no 
reason to assume that it is constant. Actually, 
a constant 1 would most likely generate un- 

7 I* = 1 (1000/365), and P = AP/1000. 
18 See Danielson (1979) where results from a large 

number of studies on water demand elasticities are sum- 
marized in a convenient table. 
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desirable results in terms of seasonality as 
the price elasticity varies inversely with 
quantity. Our simple formulation with other 
goods as the numeraire allows us to also 
specify 3 as a linear function of the same ex- 
ogenous variables.19 

III. GENERALIZED COBB-DOUGLAS 
ESTIMATION 

Estimation Methods 

We perform a simple OLS estimation,20 
add dummy variables for each month and 
year (OLSMYD), and compare the results to 
a random effect specification using General- 
ized Least Squares (GLS). The addition of 
time dummies is necessary to separate the 
seasonality and year effects from cross-sec- 
tional heterogeneity.21 The one-way (cross- 
sectional) random effect model is intuitively 
appealing in this setup because the sample 
can be considered to be a random sample 
from a larger population of communities. 
Two features of the data make a fixed effect 
model impractical. First, the number of cross 
sections (N) is large and the loss of degrees 
of freedom caused by the addition of N - 1 
dummy variables jeopardizes the stability of 
the coefficients. Second, and most important 
in our case, three of the variables used are 
time invariant, which makes a fixed effect 
model incapable of identifying coefficients 
on these variables. 

The one-way random effect specification 
of the GCD form is 

In Qit = 6o + Zit4 + ui + E,t, 

where Z consists of data for the right hand 
side variables to be used in the GCD form, 
•it 

is the classical error term, normally dis- 
tributed and with zero mean, and ui is a com- 
munity-specific error term. This panel data 
formulation of the model uses the heteroge- 
neity information contained in the data. The 
inclusion of a community-specific error term 
generates a nonstandard covariance structure. 
GLS is efficient and improves upon OLS as 
long as the effects are nonzero and uncorre- 
lated with the regressors, which would make 

GLS inconsistent.22 Hausman-Wu tests are 
carried out for all the random effect estima- 
tions. The results for all one-way random ef- 
fect specifications (reported in Table 2) sug- 
gest that there is no problem of correlation 
between the effects and the exogenous vari- 
ables when only cross-section random effects 
are used. F-tests calculated from fixed effects 
regressions and reported in Table 2 indicate 
the presence of cross-sectional sample heter- 
ogeneity. The GLS one-way random effect 
estimation should therefore be efficient and 
improve upon OLS. 

GCD Results 

OLS and GLS regressions are performed 
with and without time dummies.23 The re- 
gression results in a raw form (i.e., with coef- 
ficients and standard errors pertaining to the 
regressors) are reported in Table 2. Because 
regressors in the GCD form are composites 
of the exogenous variables, raw results are 
not readily interpretable. To quantify the im- 
pact and significance of each exogenous vari- 
able separately, elasticities and their corre- 

19 Johnson (1979) also assumes that y is a linear 
function of some exogenous variables. He argues that 
there is no theoretical reason to assume that P is not 
also a function of exogenous variables, but in his analy- 
sis with more than one 0, it would have seriously com- 
plicated the analysis. 

20 The OLS results reproduce previously published 
results (Griffin and Chang 1991). 

21 First, only month dummies were added to capture 
seasonality but year effects were found to be.highly sig- 
nificant. A simple OLS linear regression of Q on the 
exogenous variables, month dummies, and a year vari- 
able gave a highly significant coefficient of 4.82 on the 
year variable. Adding year dummies to our GCD re- 
gression takes care of this positive trend. 

22 For a theoretical discussion of one-way fixed and 
random effects models, see Greene (1997, 618-30) and 
Baltagi (1995, 9-18). 

23 Estimation of the GLS one-way unbalanced data 
random effects model is performed in SAS-ETS (1996) 
using the Baltagi and Chang (1994) specialization of 
the approach used by Wansbeek and Kapteyn (1989) for 
unbalanced two-way models. A two-way random effect 
estimation is also performed, but the Hausman-Wu test 
on this regression gives a poor result suggesting some 
correlation between the time effects and the exogenous 
variables (see Table 2). 



TABLE 2 
GENERALIZED COBB-DOUGLAS REGRESSIONS 

OLSa OLS OLS GLS 1b GLS 1 GLS 1 GLS2b 

Sample Size 12,050 12,050 9,430 9,430 9,430 9,430 9,430 
Dummies - Month/Year Month/Year - Month Month/Year 

Interceptc -5.08** -1.72** -2.80** -6.31** -2.84 -2.12 -1.95 
(0.39) (0.34) (0.39) (1.88) (2.22) (2.95) (2.77) 

Ln(AP) -0.58** -0.60** -0.60** -0.41** -0.40** -0.51** -0.50** 
(0.026) (0.025) (0.026) (0.037) (0.036) (0.035) (0.035) 

Ln(AP + I) 0.48** 0.82** 0.58** -0.92** -0.74** -0.87** -0.78** 
(0.15) (0.14) (0.15) (0.20) (0.19) (0.19) (0.18) 

Ln(AP + SP) 0.12** 0.10** 0.05** 0.058* 0.09** 0.13* 13** 
(0.016) (0.015) (0.016) (0.035)** (0.034) (0.033) (0.032) 

Ln(AP + C) 124** 57.5** 42.6* 164** 108** 86.6** 80.0** 
(18.9) (18.7) (20.2) (16.74) (16.48) (16.0) (15.78) 

Ln(AP + AAP) -0.58 -0.30 1.40** 0.93* 1.17* 2.24** 2.06** 
(0.36) (0.35) (0.39) (0.53) (0.51) (0.50) (0.49) 

Ln(I) -0.10 -0.34** -0.34** 1.03 1.01 1.23 1.21 
(0.11) (0.11) (0.12) (0.71) (0.76) (1.11) (1.04) 

Ln(I + SP) -0.36** -0.27** -0.063 -0.17 -0.18 -0.24 -0.27 
(0.044) (0.04) (0.048) (0.46) (0.50) (0.73) (0.68) 

Ln(I + C) 71.3** 35.0** 50.2** 37.12** -11.9 -23.7** -40.0** 
(7.96) (7.96) (9.05) (7.92) (8.02) (7.78) (7.71) 

0 O4 

0\ 

0s 

t,• 



Ln(I + AAP) -0.96** -0.74** -0.91** -1.08 -0.78 -0.82 -0.67 
(0.19) (0.18) (0.20) (3.27) (3.51) (5.17) (4.85) 

SP 0.010** 0.012** 0.005 0.0071 0.010 0.012 0.016 
(0.0030) (0.0030) (0.0034) (0.049) (0.052) (0.077) (0.072) 

Ln(SP + C) 18.0** 2.44 5.24 32.8** 19.4** 16.4** 9.95** 
(2.92) (2.95) (3.33) (2.44) (2.47) (2.40) (2.39) 

Ln(SP + AAP) -0.54** -0.40** -0.56** -1.00 -0.92 -0.91 -0.85 
(0.061) (0.060) (0.066) (0.99) (1.06) (1.56) (1.46) 

Ln(C) -245** - 118** -127** -284** -160** - 122** -88.7** 
(19.7) (20.1) (22.1) (17.14) (17.66) (17.2) (17.3) 

Ln(C + AAP) 32.3** 24.5** 30.2** 52.48** 46.44** 44.4** 40.0** 
(1.70) (1.71) (2.00) (1.51) (1.52) (1.47) (1.47) 

Ln(AAP) 1.08** 0.67** -0.81* -0.24 -0.67 -1.59 -1.53 
(0.35) (0.34) (0.38) (2.44) (2.61) (3.81) (3.58) 

R2 d 0.44 0.47 0.48 0.57 0.57 0.62 0.33 
F-Test 633 355 294 - - - - 

Hausman-Wu: m - - - 0.23 0.23 0.096 14.1 
D.F. - - 9 20 24 9 
prob. > m - - - (0.99) (0.99) (0.99) (0.12) 

a Replica of OLS results in Griffin and Chang (1991). 
bGLS1 = One-way random effects; GLS2 = two-way random effects. 
I Month dummy regressions intercept: December; Month/Year dummy regression intercept: December 1985. 
d Adjusted R2 are reported for OLS regressions. For GLS, a generalized version of the R2 is used. 
** Significant at the 1% level or better; * significant at the 10% level or better. 
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TABLE 3 
ELASTICITIES FROM GCD ESTIMATIONS 

OLS OLS OLSMYDa OLSMYDa GLS GLSMYDa 

N 12,050 9,430 12,050 9,430 9,430 9,430 

AP -0.37** -0.35** -0.37** -0.36** -0.39** -0.47** 
(0.007) (0.009) (0.007) (0.009) (0.012) (0.012) 

I 0.19** 0.12** 0.17** 0.11 ** 0.17 0.19 
(0.013) (0.015) (0.014) (0.015) (0.034) (0.35) 

SP -0.04** -0.04** -0.03** -0.03** -0.04 -0.03 
(0.005) (0.003) (0.002) (0.005) (0.065) (0.10) 

C 0.72** 0.72** 0.53** 0.56** 0.74** 0.53** 
(<10-5) (0.019) (0.011) (<10-5) (<10-5) (0.03) 

AAP -0.15** -0.18** -0.14** -0.17** -0.16 -0.12 
(0.010) (0.012) (<10-5) (0.011) (0.19) (0.30) 

a OLSMYD and GLSMYD correspond to OLS and GLS regressions with month and year dummies. 
b Significant at the 1% level or better; * significant at the 10% level or better. 

sponding standard errors are calculated.24 
Results are reported in Table 3. 

To evaluate the effect of the change in 
sample size from 12,050 to 9,430 observa- 
tions, the OLS results with and without time 
dummies for both samples are also reported. 
Finally, to investigate how the function per- 
forms in picking up seasonal variation in 
price elasticity, the parameters and elastici- 
ties are calculated at the January and July 
means. Table 4 presents these results. 

Price elasticities obtained with OLS and 
evaluated at the sample mean range from 
0.35 to 0.37. The GLS one-way random ef- 
fect estimates of price elasticities are uni- 
formly larger than their OLS counterparts, 
ranging from 0.39 to 0.47. As in the OLS es- 
timation, the GLS estimate is a weighted av- 
erage of the "within" estimate (which ig- 
nores variation between communities) and 
the "between"' estimate (which ignores 
variation within communities). However, a 
nonzero variance of the ut's increases the 
weight on the within estimate and decreases 
the weight on the between estimate when us- 
ing GLS. Because the price (AP) and the cli- 
mate variable (C) are the only variables that 
have nonzero within estimates, the GLS esti- 
mates on these variables are expected to be 
greater. In particular, since income is time in- 
variant, the within estimate of price elasticity 

is likely to include the missing variation in 
income (which should increase price elastic- 
ity since water is a normal good). Finally, the 
use of GLS affects the significance levels of 
the estimates. Although the significance lev- 
els on price elasticities remain high, signifi- 
cance levels on elasticities with respect to I, 
SP, and AAP are reduced. Again, because the 
within variation is given more weight in the 
GLS regression and because these variables 
are invariant within communities (and there- 
fore given a zero coefficient in the within 
estimation), this is not a surprising result. 

We wish to evaluate how elasticities are 
likely to behave if this functional form and 
its estimates are used out of sample in long- 
run planning models (i.e., when higher val- 
ues of variables such as price and income are 
used). To do so, elasticities are calculated at 

24 The price elasticity is calculated as 

[AP X b[ln(AP)] + b[ln(AP + I)] 
AP AP + I 

+ b[ln(AP + SP)] 
AP + SP 

b[ln(AP + C)+ b[ln(AP + AAP)] 
AP + C AP + AAP 

where b[.] denotes the estimated coefficient on [.]. 
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TABLE 4 
ELASTICITIES FROM GCD ESTIMATIONS: SEASONALITY 

OLS OLSMYDa GLSMYDa OLS OLSMYDa GLSMYDa 

Month January January January July July July 
N 997 750 750 969 715 715 

AP -0.31** -0.33** -0.43** -0.41** -0.39** -0.49** 
(0.010) (0.012 (0.014) (0.009) (0.010) (0.013) 

I 0.28** 0.18** 0.16 0.14** 0.08** 0.19 
(0.019) (0.020) (0.35) (0.013) (0.017) (0.35) 

SP -0.02** -0.02** -0.01 -0.05** -0.03** -0.04 
(0.006) (0.006) (0.10) (0.006) (0.006) (0.010) 

C 0.32** 0.25** 0.19** 0.96** 0.74** 0.74** 
(<10-5) (0.016) (0.032) (<10-5) (0.017) (0.032) 

AAP 0.07* 0.03* 0.18 -0.29** -0.29** -0.30 
(0.016) (0.017) (0.30) (0.013) (0.015) (0.29) 

a OLSMYD and GLSMYD correspond to OLS and GLS regressions with month and year dummies. 
** Significant at the 1% level or better; * significant at the 10% level or better. 

the maximum sample values of price and in- 
come. Results are reported in Table 5. Elas- 
ticities are generally reduced except when 
evaluated at maximum income. One impor- 
tant feature is that in most cases, except for 
the random effect specification with dum- 
mies, price elasticities become positive. This 
indicates that the functions do not perform as 
well at the maximums. This problem is likely 
to worsen when the estimates are used out of 
sample. 

Figures 2 and 3 provide a comparison be- 
tween the OLS and GLS estimations of the 
GCD function with and without month and 
year dummies. As expected, the GCD func- 
tion estimated with random effects (GLS) is 
better behaved than the OLS estimated func- 
tion at higher prices, retaining its downward 
sloping shape. Figures 4 and 5 provide a 
comparison of the January and July functions 
using OLS and GLS with and without the use 

of month and year dummies. Again, the GLS 
estimated function retains its negative slope. 
The seasonal shifts are somewhat less pro- 
nounced at higher prices when using GLS. 
Finally, the use of dummy variables in the es- 
timation seems to capture the shifts in a 
smoother way over a wider price range. 

IV. STONE-GEARY ESTIMATION 

The Stone-Geary functional form is esti- 
mated using OLS and GLS (one-way random 
effects) estimators. Although the function is 
always nonlinear in the variables, the regres- 
sion equation can be written as linear or non- 
linear in the parameters. Linear OLS can be 
used in the first case but nonlinear techniques 
are needed for the second formulation. The 
linear estimation focuses on the intercept and 
0, which are estimated as independent coef- 
ficients, y is then calculated outside of the es- 

TABLE 5 
PRICE ELASTICITY AT HIGHEST SAMPLE VALUES OF PRICE AND INCOME 

Variable at 
Maximum Valuea OLS GLS OLSMYDb GLSMYDb 

Price (AP) 0.13 -0.11 0.08 -0.21 
Income (I) -0.37 -0.29 -0.42 -0.38 
AP and I 0.08 0.06 -0.03 -0.05 

a All other variables are at their mean value. 
b OLSMYD and GLSMYD correspond to OLS and GLS regressions with month and year dummies. 
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FIGURE 2 
PLOT OF ESTIMATED GCD FUNCTION 

timation. The nonlinear technique estimates 
both 0 and y simultaneously using iterative 
methods. Because the linear estimation is 
likely to lack efficiency, nonlinear OLS and 
nonlinear GLS are used to estimate the pa- 
rameters. Nonlinear results are found to be 
very similar to linear results (only two itera- 
tions are needed to complete the estimation), 
but the nonlinear results have the advantage 
of providing a easy way to calculate approxi- 
mate standard errors and significance levels 
on the estimates of y and P, and therefore, on 
price elasticity. Linear regressions are used 
to report Hausman-Wu tests. Results on the 
threshold parameter and elasticities are dis- 
cussed below. Results on elasticities and the 
shape of the estimated demand functions are 
compared to the GCD specification found 
best in the previous section, namely the ran- 
dom effect specification with month and year 
dummies.25 

Estimated Equations 

SGE(y) refers to the estimation where y is 
a linear combination of the exogenous vari- 
ables but not P. The estimable Stone-Geary 
equation with fixed P is 

Q = (1 - I)(co + o1C + a2SP + o3AAP) 

+P 

25 For both the linear and nonlinear estimations, an 
error term is added to the regression. The error term is 
omitted when writing the following estimable equa- 
tions. The error term is e,, in the OLS regressions and 
u, + e,, in the GLS specifications, where e,, and u, have 
the usual classical assumptions. A random utility as- 
sumption would cause the E,, to be heteroskedastic 
(Brown and Walker 1989). However, there is no evi- 
dence of this causing a significant problem in the re- 
gressions. 
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FIGURE 3 
PLOT OF ESTIMATED GCD FUNCTION WITH MONTH AND YEAR DUMMIES 

where I* and P are as defined in Section 2 
and co + a1C + a2SP + a3AAP = y. For 
the linear estimation, the estimable equation 
is 

Q = a~ + a'C + a'2SP 

+ a;AAP + P 1* 
P3 

where a' = aj/(1 - f). Using the estimates 
of 0 and a~, one can calculate, y = (1 - ) 
(ao + aIC + a2SP + a3AAP), where X de- 
notes the mean of variable X. 

SGE (y, f) refers to the estimation where 
both y and [ are linear combination of the 
exogenous variables. The Stone-Geary equa- 
tion with nonconstant y and 0 is 

Q = [1 - (0o + PiC + 02SP 

+ I3AAP)](ao + a1C + a2SP + a3AAP) 

+ (Po + PC + 02SP + P3AAP) 

y = aO + alC + a2SP + a3AAP, 

and 

0 = 0o + I,C + P2SP + 03AAP. 

For the linear estimation, the estimable 
equation is 

Q = a' + a' C + a'2SP 

+ a;AAP + PO + 
PIC + 

P2SP P P P 

+ 03AAP 
Pwhere a 

where ao = a;/(1 - p). 
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FIGURE 4 
PLOT OF ESTIMATED GCD FUNCTION: SEASONALITY 

Stone-Geary Results and Comparison to GCD 

The algorithm used for the nonlinear GLS 
estimation is presented in the Appendix. Raw 
results from all different specifications and 
estimation procedures are provided in Ta- 
ble 6 (linear estimation results) and Table 7 
(nonlinear estimation results). To better as- 
sess the robustness of our results, plots of the 
estimated functions are given for all the dif- 
ferent specifications using the nonlinear esti- 
mates evaluated at the sample means (Fig- 
ure 6). The graph shows very little variation 
between the specifications to the extent that 
it is difficult to distinguish between them. 

Hausman-Wu tests for GLS random-effect 
regressions are quite poor when month and 
year dummies are not included. These test re- 
sults suggest that there is some correlation 
between the regressors and the effects and 
cast doubt on consistency of the parameter 

estimates.26 Since the Hausman-Wu tests for 
the GLS regressions with month and year 
dummies give significantly better results, 
emphasis is placed on these regression re- 
sults. The hypothesis of correlation is re- 
jected at the 0.01 level for SGE(y). Hausman- 
Wu tests results are not as good when P is 
variable, and we cannot reject the hypothesis 
of correlation at the 0.1 level. However, this 
does not necessarily imply correlation. When 
p is not fixed, the regression relies more 
heavily on variables that are combined with 
time-invariant exogenous variables. The 
Hausman-Wu test drops the purely time-in- 
variant variables that enter in the estimation 
of y, but it does leave all the time-invariant 

26 Because nonlinear and linear results are very simi- 
lar Hausman-Wu tests are not calculated for nonlinear 
regressions. Hausman-Wu tests on linear regressions 
are reported in Table 6. 
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FIGURE 5 
PLOT OF ESTIMATED GCD FUNCTION WITH MONTH AND YEAR DUMMIES: SEASONALITY 

variables in [ since they are all divided by P, 
which is time variant. Because the fixed ef- 
fect coefficient on these variables must be 
zero, the difference between the fixed effect 
estimator and the random effect estimator is 
likely to increase. This argument questions 
the straightforward interpretation of the 
Hausman-Wu test when time-invariant vari- 
ables are present and are combined with 
other variables in a nonadditive way. The ad- 
dition of dummies might improve the test not 
so much by taking care of the correlation 
problem but by reducing the reliance on 
time-invariant variables. Because the test re- 
mains informative when it comes out posi- 
tive, it is still preferable to rely on the regres- 
sions with the better Hausman-Wu test 
results. 

Table 8 reports the estimated marginal 
budget shares (P), conditional water thresh- 
olds (y), and price elasticities (E) for the 
SGE(y) and SGE(y, P) regressions with 

dummies. The parameters and associated ap- 
proximate standard errors are evaluated at 
the sample means, the January means, and 
the July means.27 All parameters are highly 
significant. 

Conditional water threshold. Results on the 
threshold parameter in gallons per capita per 
day (gcd) range from 114 to 128 on average. 
The January threshold is estimated between 
86 and 118 gcd. The July threshold jumps to 
155-176 gcd. Seasonal variations in y are 
reduced when 3 is variable because the pref- 
erence parameter picks up some of the varia- 
tion. 

One must be very careful when interpret- 

27 The threshold parameter involves an intercept 
which includes month and year dummies. For results 
evaluated at sample averages, the averages of coeffi- 
cient estimates on month dummies and year dummies 
are used. For the January and July results, y is calcu- 
lated using the estimated coefficient on the appropriate 
month dummy. 



TABLE 6 
STONE GEARY: RESULTS OF LINEAR REGRESSIONS 

Q = 
a• 

+ 
a'lC 

+ 
a2SP 

+ acAAP + 
P P 

, = (ac + a.C + a'SP + a;AAP)(1 - 3) 
= P orp = 3o + 3,C+ 132SP+ 133AAP 

N = 9,430 OLS GLS OLSMYDa GLSMYDa OLS GLS OLSMYDa GLSMYDa 

alb 39.72** 28.72** 59.66** 43.70** 109.25** 32.09** 117.02** 33.60* 
(3.36) (11.88) (4.78) (12.24) (7.39) (16.08) (8.05) (15.98) 
0.075** 0.076** 0.070** 0.071** 0.034** 0.036** 0.035** 0.037** 

(0.0013) (0.0010) (0.0028) (0.024) (0.0029) (0.0022) (0.0038) (0.0031) 
ao -0.59** -0.55 -0.54** -0.46 - 1.82* - 1.57** - 1.84** - 1.54** 

(0.097) (0.49) (0.095) (0.50) (0.22) (0.62) (0.21) (0.61) 
oa - 1.46** -1.36** - 1.43** - 1.29** -1.01** 1.41** - 1.02** 1.44** 

(0.058) (0.30) (0.056) (0.30) (0.13) (0.40) (0.13) (0.40) 
P 0.0037** 0.0042** 0.0038** 0.0046** 

(9E-5) (0.0001) (9E-5) (0.0001) 
13o -0.0023** 0.0033** -0.0013** 0.0049** 

(0.0005) (0.0007) (0.0005) (0.0006) 
13 3.5E-6** 3.4E-6** 3.0E-6** 2.7E-6** 

(2E-7) (2E-7) (2E-7) (2E-7) 
12 0.0001 ** 9.1E-5** 0.0001 ** 9.7E-51* 

(2E-5) (2E-5) (2E-5) (2E-5) 
03 -4E-5** -0.0002** -3E-5** -0.0002** 

(9E-6) (2E-5) (9E-6) (2E-5) 

Y• 124 118 123 114 126 134 125 129 
13 0.0037 0.0042 0.0038 0.0046 0.0035 0.0026 0.0036 0.0032 

R2 d 0.41 0.46 0.45 0.53 0.43 0.50 0.46 0.56 
F-Test 1643 - 402 - 1023 - 371 

Hausman-Wu Test 
m 2.95 - 6.19 - 15.60 - 14.16 
DF - 2 - 17 - 5 - 20 
Prob > m - 0.23 - 0.99 - 0.008 - 0.82 
a OLSMYD and GLSMYD correspond to OLS and GLS regressions with month and year dummies. 
bThe Month/Year dummy regression intercept corresponds to December 1985. ' Regression with dummies: all dummy coefficients are used to calculate y. 
d Adjusted R2 are reported for OLS regressions. For GLS, a generalized version of the R-squared is used. 
** Significant at the 1% level or better; * significant at the 5% level or better. 
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TABLE 7 
STONE GEARY: RESULTS OF NONLINEAR REGRESSIONS 

I* 
Q = (1 - 

P)(a• 
+ 

aoC 
+ a2SP + a3AAP) + P3- P 

Y = ao + al C + a2SP + a3AAP 

P = P orp = o + PiC+ 02SP+ P3AAP 

N = 9,430 OLS GLS OLSMYDa GLSMYDa OLS GLS OLSMYDa GLSMYDa 

aob 39.87** 28.90** 59.89** 43.80** 109.08** 35.00** 117.44** 34.68* 
(3.37) (11.53) (4.79) (12.95) (7.36) (14.08) (8.07) (15.07) 

al 
0.076** 0.077** 0.070** 0.071** 0.034** 0.036** 0.035** 0.037** 

(0.0013) (0.0010) (0.0028) (0.024) (0.0029) (0.0023) (0.0038) (0.0031) 
a2 -0.59** -0.55 -0.54** -0.46 - 1.82** - 1.57** - 1.85** - 1.55** 

(0.098) (0.48) (0.095) (0.53) (0.22) (0.52) (0.21) (0.56) 
a3 - 1.46** - 1.36** - 1.44** - 1.29** -1.01** 1.32** - 1.02** 1.40** 

(0.058) (0.29) (0.057) (0.32) (0.13) (0.35) (0.13) (0.37) 
0.0037** 0.0042** 0.0038** 0.0046** 

(9E-5) (0.0001) (9E-5) (0.0001) 
o - 0.0023** 0.0033** -0.0013** 0.0049** 

(0.0005) (0.0007) (0.0005) (0.0006) 
3.5E-6** 3.4E-6** 3.0E-6** 2.7E-6** 

(2E-7) (2E-7) (2E-7) (1E-7) 
P2 0.0001** 9.1E-5** 0.0001** 9.7E-5** 

(2E-5) (2E-5) (2E-5) (2E-5) 
3 - 3E-5** -0.0002** -3E-5** -0.0002** 

(9E-6) (2E-5) (9E-6) (2E-5) 

yc 124** 118** 123** 114** 126** 134** 125** 128** 
(3.45) (11.00) (5.16) (12.57) (7.09) (13.54) (8.09) (14.61) 
0.0037** 0.0042 0.0038 0.0046 0.0035 0.0026 0.0036 0.0032 

(9E-5) (0.0001) (9E-5) (0.0001) (0.0005) (0.0005) (0.0005) 0.0005) 
a OLSMYD and GLSMYD correspond to OLS and GLS regressions with month and year dummies. 
bThe Month/Year dummy regression intercept corresponds to December 1985. 
c Regression with dummies: all dummy coefficients are used to calculate y and its standard error. 
** Significant at the 1% level or better; * significant at the 5% level or better. 
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FIGURE 6 
PLOT OF NONLINEAR ESTIMATIONS OF STONE-GEARY DEMAND EVALUATED AT SAMPLE MEANS 

ing y for several reasons. First of all, water 
production is used instead of water consump- 
tion. This implies that all losses to the system 
are included in the threshold. Water utilities 
(or city planners) need to interpret this pa- 
rameter as a per capita production threshold, 
which can be lowered proportionately to a 
reduction in losses. To obtain the consum- 
er's water use threshold, the y estimate must 
be corrected by the average losses of the 
community. 

The second caveat is all other goods are 
assumed to be gross complements to water 
consumption. In particular, the tradeoff be- 
tween a more expensive water-efficient dura- 
ble good versus one that is less expensive but 
uses more water is not considered. Threshold 
parameters are likely to be reduced if tech- 
nology changes allow water to be econo- 
mized. The availability of water-efficient du- 
rable goods, such as water-efficient toilets 

and washing machines, will have an impact 
on water demand and the water use thresh- 
old. However, this will only be observed if 
our time period allows for large price reduc- 
tion in these goods. Also, residential custom- 
ers are likely to reassess their decision to 
maintain lawns if the price of water increases 
beyond the levels of our sample, a fact that 
cannot be captured in our estimates. 

Finally, it is important to note that the esti- 
mated threshold is conditional on the price 
structure in place. A price structure that in- 
corporates fixed charges does not allow mar- 
ginal prices to be clearly defined. Conse- 
quently, individuals use average price in their 
decision to consume water, as is the case in 
the Texas sample we use (see Section 2). A 
large threshold indicates that conservation 
practices which are not price-based (or only 
affect prices of substitutes) may potentially 
have more impact on the reduction of water 
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TABLE 8 
NONLINEAR ESTIMATION OF STONE-GEARY CONDITIONAL WATER 

THRESHOLDS (y), MARGINAL BUDGET SHARES (01), AND PRICE ELASTICITIES (E) 

SGE(y) SGE(p, y) 

OLSMYDa GLSMYDa OLSMYDa GLSMYDa 

Yearly average y 123** 114** 125** 128** 
(5.16) (12.6) (8.10) (14.61) 

P 0.0038** 0.0046** 0.0036** 0.0032** 
(9E-5) (0.0001) (0.0005) (0.0005) 

E -0.23** -0.28** -0.22** -0.19** 
(0.0057) (0.0082) (0.029) (0.028) 

January y 95** 86** 115** 118** 
(5.08) (12.5) (7.77) (14.52) 

P 0.0038** 0.0046** 0.0021** 0.0017** 
(9E-5) (0.0001) (0.0005) (0.0005) 

E -0.27 -0.33 -0.15 -0.12 
(0.0057) (0.0082) (0.029) (0.029) 

July y 176** 166** 155** 162** 
(6.76) (13.1) (9.54) (15.17) 

P 0.0038** 0.0046** 0.0053** 0.0047** 
(9E-5) (0.0001) (0.0005) (0.0005) 

E -0.19* -0.24** -0.27** -0.24** 
(0.0057) (0.0082) (0.034) (0.029) 

a OLSMYD and GLSMYD correspond to OLS and GLS regressions with month and year dummies. 
** Significant at the 1 percent level or better. 

use per capita than price increases on water. 
This does not mean that a fundamental 
change in the price structure, making mar- 
ginal prices more transparent, would not be 
a better policy tool. 

These considerations make our results 
problematic for long-run predictions when 
increased water scarcity would bring about 
modifications of the pricing system and 
change the value of y. In addition, the water 
threshold is only a function of our climate 
variable, average rainfall, and percent of 
population of Spanish origin. Only SP is 
likely to increase and have some impact on 
the level of y.28 Ideally, if a longer time series 
with data on the price and availability of wa- 
ter conserving goods were available, one 
could make y a function of these new vari- 
ables as well, allowing y to vary over time. 

Nonetheless, even when production data 
is used, results on this conditional threshold 
parameter are still informative in the short 
run. They show that, given the range and 
structure of water prices, given the availabil- 
ity and prices of other goods that could par- 

tially "substitute" for water, and with losses 
of 20-25%, more than half of water use may 
not be responsive to price. 

Elasticities. The elasticities obtained from 
the Stone-Geary specification and evaluated 
at the appropriate means are lower than the 
GCD results. The range of price elasticities 
using Stone-Geary is 0.19 to 0.28, compared 
to 0.35 to 0.47 using GCD. The results also 
indicate that the Stone-Geary specification 
allows significant seasonal variation in elas- 
ticities. When P is fixed, summer elasticities 
are lower than winter elasticities. This is not 
surprising because the Stone-Geary elasticity 
is inversely proportional to the expenditure; 
with P fixed, the increase in Q, due mostly 
to factors other than a price decrease, domi- 

28 SP impacts the threshold negatively and the elas- 
ticity positively, indicating that the Hispanic population 
is more flexible in their use of water. y is significantly 
reduced in all the estimations when the maximum value 
of SP (35.3 percent) is used. When elasticities are al- 
lowed to vary with SP, we obtain values of y ranging 
from 70 to 88 gcd (compared to 124-134 gcd at the 
mean value of SP). 
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TABLE 9 
STONE-GEARY PRICE ELASTICITIES AT HIGHEST SAMPLE VALUES OF PRICE, 

INCOME, AND QUANTITY 
I* 

= - PQ) PQ 

SGE(y) SGE(p, y) 

Variable at Maximum Valuea OLSMYDb GLSMYDb OLSMYDb GLSMYDb 

Price (P) -0.065 -0.079 -0.062 -0.055 
Price and Quantity (Q) -0.015 -0.018 -0.014 -0.013 
Income (I*) -0.51 -0.63 -0.49 -0.43 
Income and Quantity -0.012 -0.14 -0.11 -0.10 
Price, Income, and Quantity -0.033 -0.041 -0.032 -0.028 

a All other variables are at their mean value. 
b OLSMYD and GLSMYD correspond to OLS and GLS regressions with month and year dummies. 

nates. If one wants to measure seasonal elas- 
ticities, the marginal budget share parameter 
needs to vary with the seasonal variables (C, 
in our estimation). When 0 is allowed to 
vary, the result of higher price elasticities for 
summer demand is re-established. Both the 
OLS and GLS estimation of SGE(y, 0) give 
a seasonal variation of elasticity estimates 
larger than the GCD regression. Stone-Geary 
results give an increase in elasticity between 
winter and summer of 0.12 (from 0.15 to 
0.27 for OLS and from 0.12 to 0.24 for 
GLS), whereas the GCD results showed an 
increase of 0.06. 

The main objective is to determine 
whether the simple Stone-Geary specifica- 
tion could provide ranges of elasticities com- 
parable to the more flexible GCD form yet 
allow for out-of-sample use in simulations 
when variables increase over time. Table 9 
reports price elasticities at the sample max- 
ima of price, income, and quantity. It shows 
that the Stone-Geary specification yields a 
large variation in price elasticity when the 
values of most variables increase. All elastic- 
ities calculated at maxima are lower than 
elasticities calculated at the sample averages. 
The only exception is when the elasticity is 
calculated at maximum income only. This 
seems reasonable since the price relative to 
income has decreased. Unlike the GCD esti- 
mation results, price elasticities remain 
strictly negative in all cases. 

Figure 7 shows the plot of the OLS and 

GLS estimated Stone-Geary function with 
month and year dummies and nonconstant 
marginal budget shares and compares it to 
the previous GCD results. For the compari- 
son, the one-way random effect estimation of 
GCD with month and year dummies is used 
since it was shown to behave best at higher 
prices. The Stone-Geary estimated functions 
have a steeper slope and retain higher quan- 
tity levels than GCD at higher prices. This is 
a direct result of the Stone-Geary formula- 
tion, which constrains the function to be 
asymptotic to a minimum quantity deter- 
mined by the threshold parameter. The func- 
tion is still well behaved in that it is down- 
ward sloping everywhere. This result 
improves upon the OLS estimated GCD 
function (Figure 3). 

V. CONCLUSION 

The motivation for using Stone-Geary was 
simple: we wanted a function with few, eas- 
ily interpretable, parameters that could be 
used in dynamic management problems that 
require more than just price elasticities on the 
demand side. Alternative functional forms 
that retain a simple parameter structure are 
the linear and log-linear forms. Linear de- 
mand forces the elasticity to increase as price 
increases, and the log-linear form maintains 
constant price elasticity. Constant price elas- 
ticity has been commonly used in water man- 
agement models that include the computation 
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FIGURE 7 
COMPARISON OF ESTIMATED GCD AND STONE-GEARY DEMANDS 

of consumer surplus. However, research us- 
ing more flexible functional forms provides 
strong evidence that water demand price 
elasticities vary seasonally and over time. 

It is surprising that the Stone-Geary func- 
tion has not been used in water demand esti- 
mation. The behavior it implies, that individ- 
uals will use a minimum amount of a good 
regardless of price fluctuations, and then de- 
cide on the rest according to a preference pa- 
rameter, the price, and their income, seems 
well suited for water. Furthermore, the fact 
that water is a normal good and has inelastic 
demand makes it a good candidate for a 
Stone-Geary specification. The form is parsi- 
monious enough to parameterize demand in 
structural dynamic models of water manage- 
ment and our analysis shows that the speci- 
fication is also able to provide estimates of 
elasticities comparable to other more compli- 
cated forms. 

A good benchmark was needed to evalu- 

ate the performance of the Stone-Geary spec- 
ification. The General Cobb-Douglas (GCD) 
estimation of municipal water demand in 
Texas was refined using econometric tech- 
niques that allow the panel structure of our 
data to be fully exploited. The new random 
effect estimation (GLS) improves upon the 
OLS procedure. Price elasticities are similar 
but slightly higher. Elasticity estimates of 
0.39 to 0.47 are obtained using GLS, com- 
pared to 0.37 using OLS. Summer elasticities 
were 0.06 points higher than winter elastici- 
ties for OLS and GLS results. GCD gives 
price elasticities that decrease both in price 
and income. When calculated at the maxima 
of our price and income data, elasticities 
were significantly lowered. Of all the estima- 
tions of GCD, only GLS with month and year 
dummies retained a negative price-quantity 
relationship at high prices. 

The Stone-Geary results give elasticities 
ranging from 0.19 to 0.28. Although lower, 
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and likely not providing as good a fit within 
the sample as GCD results, these estimates 
are not out of the range of price elasticity es- 
timates in the literature. Summer elasticities 
were 0.12 points higher than winter elastici- 
ties, indicating that Stone-Geary can success- 
fully generate large seasonal variation. It is 
important to note that the marginal budget 
share parameter P in Stone-Geary must be al- 
lowed to vary with the monthly climate vari- 
able to get this result. Stone-Geary gives esti- 
mates of price elasticities that increase with 
income but decrease with price and quantity. 
At the maximum price, income, and quantity, 
elasticities in the 0.03 to 0.04 range are ob- 
tained. These results are similar to the ones 
obtained with GCD. Such results cannot be 
obtained when using linear or log-linear 
forms. Moreover, the Stone-Geary estima- 
tion results on these elasticities are more ro- 
bust to the type of estimation than the GCD 
results, and the negative price quantity rela- 
tionship is preserved. This is encouraging if 
one wishes to use the estimation results over 
a larger range of prices. 

Finally, the Stone-Geary results suggest 
that approximately three quarters of the total 
water usage is not responsive to price 
changes. This threshold needs to be lowered 
to reflect the 15-20% system losses in Texas 
communities that creates a gap between wa- 
ter production and water consumption. How- 
ever, this still leaves more than half of water 
demand unresponsive to price increases. The 
reader is cautioned about the conditional na- 
ture of this parameter. Ideally one would 
want to include some long-term determinants 
of the threshold water use. Indeed, increased 
water prices are expected to eventually affect 
the decision to buy water-intensive durable 
goods, which in turn will reduce the water 
use threshold. Also, increased water scarcity 
is likely to bring about price reforms to give 
the right price signal to consumers. This is 
why a longer-term analysis would be neces- 
sary to look at the behavior of this threshold 
over time. The estimated water threshold, 
nonetheless, gives information conditional 
on the type of data used and the length of the 
time series. For time periods limited to five 
years and given a price range of about 0.2 to 

6.2 dollars per thousand gallons provided by 
our data, water consumption cannot on aver- 
age be reduced by more than 40 percent us- 
ing a price instrument of the current type. In 
practice, the Stone-Geary threshold parame- 
ter could be estimated as a cross-section-spe- 
cific parameter using dummies for the differ- 
ent areas. It could then be used to target 
different demand management policies to 
different areas with different characteristics, 
as suggested in Renwick and Archibald 
(1998). 

The exclusion of all other prices and, in 
particular, prices of water-consuming dura- 
ble goods, results in an important reservation 
about using the Stone-Geary results in long- 
run management problems. More data is 
needed to include these variables in the anal- 
ysis. They could be included without chang- 
ing the structure of the Stone-Geary system 
by simply adding more exogenous variables 
as determinants of the threshold level and 
possibly the preference parameter. 

Further work could compare the results of 
the Stone-Geary to a nonparametric or semi- 
parametric demand estimation such as in 
Hausman and Newey (1995). Such types of 
estimations have not yet been used in the wa- 
ter demand literature but could reduce the 
possibility of mispecification, provide an 
even less restrictive benchmark than the 
GCD, and allow closer inspection of the size 
and variation in elasticities. 

APPENDIX 

In order to estimate the nonlinear Stone-Geary 
form with nonlinear GLS, the exogenous vari- 
ables need to be transformed.29 The variance de- 
compositon described here is adapted from 
Greene (1997, 625-35). The error variance is di- 
vided into two components: a2, the variance spe- 
cific to the regular error term, and ao, the variance 
specific to the cross-sectional effect. The panel is 
unbalanced: each cross section i has Ti observa- 
tions and XiT, = N. There are K regressors ex- 

29 Available statistical packages handle linear GLS 
for estimating random effect specifications but do not 
handle nonlinear GLS. 
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cluding the intercept. The variance is decomposed 
using 

e'e 
mee - , for i = 1 to N, 

and 

e **'e** 
m** 

N-- K, e**i = Qi- Xi, N-K 

where mee is the meap squared error from the 
linear OLS regression, _ is a vector of OLS pa- 
rameter estimates, and X, is a vector of the group 
means of exogenous variables. OLS estimates 
rather than within estimates from a Least Square 
Dummy Variable estimation are used for mee be- 
cause of the presence of time-invariant variables. 

The probability limits are 

mee = O~ + oY, 

and 

u 
= m**- o X Qn, where 

Qn 

One can solve for the estimated oy and oy 
using 

1 - 

AE X (Mee - 
m**), 

and 

2 Qn 
S- X m** X mee 

1-Q1 - 
Qn 

Given the above, all the variables in the model, 
including intercept and dummies, are transformed 
using 

XTi = Xi - PiX, 

where 

X,= 
1- 

_ a V T, X oi + of 
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